• Title/Summary/Keyword: long endurance

Search Result 201, Processing Time 0.022 seconds

Airframe Structure Development of Solar-powered HALE UAV EAV-3 (고고도 장기체공 태양광 무인기 EAV-3 기체구조 개발)

  • Shin, Jeong Woo;Park, Sang Wook;Lee, Sang Wook;Kim, Tae-Uk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.3
    • /
    • pp.35-43
    • /
    • 2017
  • Research for solar-powered high altitude long endurance(HALE) UAV was conducted by Korea Aerospace Research Institute(KARI), and the EAV-3 with 19.5m wing span was developed. For HALE flight, aircraft should be lightly designed. Especially, airframe structure that accounts for a large portion of the total weight of aircraft should be lightweight. In this paper, development process of airframe structure for solar-powered HALE UAV, EAV-3, is described briefly. Domestic developed T-800 grade CFRP(Carbon Fiber Reinforced Plastic) composite material with high modulus and strength was used to design main load carrying structures. Flightloads analysis that takes into account large structural deformation was carried out. Stress and flutter analyses for airframe structure sizing were conducted. Static strength test for main wing and aircraft ground vibration test were conducted successfully and structural integrity was secured.

In-Flight and Numerical Drag Prediction of a Small Electric Aerial Vehicle (비행시험과 전산해석을 통한 소형무인기 항력 예측)

  • Jin, Won-Jin;Lee, Yung-Gyo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.2
    • /
    • pp.51-56
    • /
    • 2015
  • This paper presents the procedure of drag prediction for EAV-1, based on a numerical analysis correlated to an in-flight test. EAV-1, developed by Korea Aerospace Research Institute, is a small-sized UAV to test a hydrogen-fuel cell power system. The long-endurance test flight of 4.5 hours provides numerous in-flight data. The thrust and drag of EAV-1 during the flight test are estimated based on the wind-tunnel test results for EAV-1's propeller performance. In addition, the CFD analysis using a commercial Navier-Stokes code is carried out for the full-scale EAV-1. The computational result suggests that the initial CFD analysis substantially under-predicts the in-flight drag in that the discrepancy is up to 27.6%. Therefore, additional investigation for more accurate drag prediction is performed; the effect of propeller slipstream is included in the CFD analysis through "fan disk" modelling. Also, the additional drag from airplane trim and load factor that actually exists during the flight test in a circular path is considered. These supplemental analyses for drag prediction turn out to be effective since the drag discrepancy reduces to 2.3%.

Optimal Manufacturing of Composite Wing Ribs in Solar-Powered UAVs: A Study (태양광 무인기 복합재 윙 리브 최적 제작 연구)

  • Yang, Yongman;Kim, Myungjun;Kim, Jinsung;Lee, Sooyong
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.4
    • /
    • pp.50-58
    • /
    • 2016
  • In our preceding study, we reported that the use of light, composite-material wings in long-endurance Solar-Powered UAVs is a critical factor. Ribs are critical components of wings, which prevent buckling and torsion of the wing skin. This study was undertaken to design and manufacture optimal composite ribs. The ribs were manufactured by applying laminated-layer patterns and shapes, considering the anisotropic properties of the composite material. Through the finite element analysis using the MSC Patran/Nastran, the maximum load and the displacement shape were identified. Based on the study results measured by structural tests, we present an optimal design of ribs.

Wing Design Optimization of a Solar-HALE Aircraft

  • Lim, JaeHoon;Choi, Sun;Shin, SangJoon;Lee, Dong-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.219-231
    • /
    • 2014
  • We develop a preliminary design optimization procedure in this paper regarding the wing planform in a solar-powered high-altitude long-endurance unmanned aerial vehicle. A high-aspect-ratio wing has been widely adopted in this type of a vehicle, due to both the high lift-to-drag ratio and lightweight design. In the preliminary design, its characteristics need to be addressed correctly, and analyzed in an appropriate manner. In this paper, we use the three-dimensional Euler equation to analyze the wing aerodynamics. We also use an advanced structural modeling approach based on a geometrically exact one-dimensional beam analysis. Regarding the structural integrity of the wing, we determine detailed configuration parameters, specifically the taper ratio and the span length. Next, we conduct a multi-objective optimization scheme based on the response surface method, using the present baseline configuration. We consider the structural integrity as one of the constraints. We reduce the wing weight by approximately 25.3 % from that in the baseline configuration, and also decrease the power required approximately 3.4 %. We confirm that the optimized wing has sufficient flutter margin and improved static longitudinal/directional stability characteristics, as compared to those of the baseline configuration.

High Density and Low Voltage Programmable Scaled SONOS Nonvolatile Memory for the Byte and Flash-Erased Type EEPROMs (플래시 및 바이트 소거형 EEPROM을 위한 고집적 저전압 Scaled SONOS 비휘발성 기억소자)

  • 김병철;서광열
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.10
    • /
    • pp.831-837
    • /
    • 2002
  • Scaled SONOS transistors have been fabricated by 0.35$\mu\textrm{m}$ CMOS standard logic process. The thickness of stacked ONO(blocking oxide, memory nitride, tunnel oxide) gate insulators measured by TEM are 2.5 nm, 4.0 nm and 2.4 nm, respectively. The SONOS memories have shown low programming voltages of ${\pm}$8.5 V and long-term retention of 10-year Even after 2 ${\times}$ 10$\^$5/ program/erase cycles, the leakage current of unselected transistor in the erased state was low enough that there was no error in read operation and we could distinguish the programmed state from the erased states precisely The tight distribution of the threshold voltages in the programmed and the erased states could remove complex verifying process caused by over-erase in floating gate flash memory, which is one of the main advantages of the charge-trap type devices. A single power supply operation of 3 V and a high endurance of 1${\times}$10$\^$6/ cycles can be realized by the programming method for a flash-erased type EEPROM.

Study on Fault Diagnostics of a Turboprop Engine Using Fuzzy Logic and BBNN (퍼지와 역전파신경망 기법을 사용한 터보프롭 엔진의 진단에 관한 연구)

  • Kong, Chang-Duk;Lim, Se-Myung;Kim, Keon-Woo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.2
    • /
    • pp.1-7
    • /
    • 2011
  • The UAV(Unmanned Aerial Vehicle) which is remotely operating with long endurance in high altitude must have a very reliable propulsion system. The precise fault diagnostic system of the turboprop engine as a propulsion system of this type UAV can promote reliability and availability. This work proposes a diagnostic method which can identify the faulted components from engine measuring parameter changes using Fuzzy Logic and quantify its faults from the identified fault pattern using Neural Network Algorithms. It is found by evaluation examples that the proposed diagnostic method can detect well not only single type faults but also multiple type faults.

A Study on Manufacturing Methods of Cocuring Composite Wings of Solar-Powered UAV (복합재 태양광 무인기 날개 일체성형 제작기법 연구)

  • Yang, Yongman;Kwon, Jeongsik;Kim, Jinsung;Lee, Sooyong
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.43-50
    • /
    • 2016
  • In order to suggest the optimal manufacturing technology of composite wings of solar-powered unmanned aerial vehicles, this study compared forming technologies to reduce wing weight for long-endurance flight and to improve the manufacturing process for cost-saving and mass production. It compared the manufacturing time and weight of various composite wing molding technologies, including cocuring, secondary bonding, and manufacturing by balsa. As a result, wing weight was reduced through cocuring methods such as band type composite fiber/tape lamination technology, which enabled prolonged flight duration. In addition, the reduced manufacturing time led to a lower cost, which is a good example of weight lightening for not only small solar-powered UAVs, but also composite aircraft.

A Study on Material Degradation and Fretting Fatigue Behavior (재질 열화와 프레팅 피로거동 평가에 관한 연구)

  • Kwon, Jae-Do;Choi, Sung-Jong;Sung, Sang-Suk
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.157-162
    • /
    • 2001
  • Fretting is a potential degradation mechanism of structural components and equipments exposed to various environments and loading conditions. The fretting degradation, for example, can be observed in equipments of nuclear, fossil as well as petroleum chemical plants exposed to special environments and loading conditions. It is well known that a cast stainless steel(CF8M) used in a primary reactor coolant(RCS) degrades seriously when that material is exposed to temperature range ken $290^{\circ}C{\sim}390^{\circ}C$ for long period. This degradation can be resulted into a catastrophical failure of components. In the present paper, the characteristics of the fretting fatigue are investigated using the artificially aged CF8M specimen. The specimen of CF8M are prepared by an artificially accelerated aging technique holding 1800hr at $430^{\circ}C$ respectively. Through the investigations, the simple fatigue endurance limit of the virgin specimen is not altered from that obtained from the fatigue tests imposed the fretting fatigue. The similar tests are performed using the degraded specimen. The results are not changed from those of the virgin specimen. The significant effects of fretting fatigue imposed on both virgin and degraded specimen on the fatigue strength are not found.

  • PDF

Changes of Handsheet Fracture Toughness by Wood and Cotton Fibers Mixing (목재섬유와 면섬유의 혼합에 따른 수초지의 파괴인성 변화)

  • Kim, Jeong-Jung;Jang, Dong-Uk;Yoon, Sang-Gu;Shin, Hyeon-Sik;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.3
    • /
    • pp.81-87
    • /
    • 2014
  • Conditions of paper manufacturing process should be changed depending on the end use and paper properties. Most of the case, mixed pulps with long softwood fibers and short hardwood fibers are used to achieve proper qualities of product with reasonable production cost. For specialty paper manufacture the wood pulp and cotton linter pulp are usually mixed together. The objectives of this study is to analyze physical, mechanical and fracture mechanical properties of paper depending on SwBKP, HwBKP and cotton linter pulp(CLP) mixing. When the mixing ratio of SwBKP was increased, strength properties, such as tensile, tear, and folding endurance, were also increased. When the mixing ratio of SwBKP and HwBKP was increased, stress concentration index was decreased and fracture toughness was increased.

Mechanical Properties of Silicon Nitride Laser-Assisted Machined by Laser Power (레이저 출력에 따른 레이저예열선삭된 질화규소의 기계적 특성)

  • Kim, Jong-Do;Lee, Su-Jin;Shin, Ding-Sig;Suh, Jeong;Lee, Jae-Hoon
    • Laser Solutions
    • /
    • v.12 no.4
    • /
    • pp.12-16
    • /
    • 2009
  • The engineering ceramic is one of the materials advantageous in various conditions with high strength, endurance at high temperature, abrasion resistance and corrosion resistance, etc. However, due to high strength and high brittleness, ceramic incurs high costs and long time on finishing process required after sintering. So a process for obtaining wanted measurements of them has been studied using the high temperature which makes ceramics softened and heat affected recently. This study makes an estimate of laser-assisted machining (LAM) if an economically practical process for manufacturing precision silicon nitride ceramic parts using laser beam. In this study, mechanical properties of silicon nitride at high temperature were observed. And during the LAM, it was observed that cutting force and tool wear were reduced and oxidation of machined surface was increased according to a increase of laser power.

  • PDF