• 제목/요약/키워드: logistic linear models

검색결과 86건 처리시간 0.022초

Collapsibility and Suppression for Cumulative Logistic Model

  • Hong, Chong-Sun;Kim, Kil-Tae
    • Communications for Statistical Applications and Methods
    • /
    • 제12권2호
    • /
    • pp.313-322
    • /
    • 2005
  • In this paper, we discuss suppression for logistic regression model. Suppression for linear regression model was defined as the relationship among sums of squared for regression as well as correlation coefficients of. variables. Since it is not common to obtain simple correlation coefficient for binary response variable of logistic model, we consider cumulative logistic models with multinomial and ordinal response variables rather than usual logistic model. As number of category of a response variable for the cumulative logistic model gets collapsed into binary, it is found that suppressions for these logistic models are changed. These suppression results for cumulative logistic models are discussed and compared with those of linear model.

Suppression and Collapsibility for Log-linear Models

  • Sun, Hong-Chong
    • Communications for Statistical Applications and Methods
    • /
    • 제11권3호
    • /
    • pp.519-527
    • /
    • 2004
  • Relationship between the partial likelihood ratio statistics for logisitic models and the partial goodness-of-fit statistics for corresponding log-linear models is discussed. This paper shows how definitions of suppression in logistic model can be adapted for log-linear model and how they are related to confounding in terms of collapsibility for categorical data. Several $2{times}2{times}2$ contingency tables are illustrated.

로지스틱 회귀모형에서의 SUPPRESSION (Suppression for Logistic Regression Model)

  • 홍종선;김호일;함주형
    • 응용통계연구
    • /
    • 제18권3호
    • /
    • pp.701-712
    • /
    • 2005
  • 로지스틱 회귀모형에서 suppression의 논의는 선형회귀의 논의보다 많지 않은데 그 이유 중의 하나는 회귀제곱합 또는 결정계수의 정의가 유일하지 않고 다양하기 때문이다. 여러 종류의 결정계수들 중에서 선호되는 두 종류의 결정계수와 Liao와 McGee(2003)가 제안한 두 종류의 수정 결정계수의 정의로부터 회귀제곱합을 유도하여 로지스틱 회귀모형에서의 suppression을 설명하고자 한다. 모의실험을 통하여 자료를 생성하여 어떤 경우에 suppression이 발생하는지를 살펴보고 그 결과를 선형회귀모형에서의 suppression 결과와 비교한다.

Multicollinarity in Logistic Regression

  • Jong-Han lee;Myung-Hoe Huh
    • Communications for Statistical Applications and Methods
    • /
    • 제2권2호
    • /
    • pp.303-309
    • /
    • 1995
  • Many measures to detect multicollinearity in linear regression have been proposed in statistics and numerical analysis literature. Among them, condition number and variance inflation factor(VIF) are most popular. In this study, we give new interpretations of condition number and VIF in linear regression, using geometry on the explanatory space. In the same line, we derive natural measures of condition number and VIF for logistic regression. These computer intensive measures can be easily extended to evaluate multicollinearity in generalized linear models.

  • PDF

On statistical Computing via EM Algorithm in Logistic Linear Models Involving Non-ignorable Missing data

  • Jun, Yu-Na;Qian, Guoqi;Park, Jeong-Soo
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2005년도 추계 학술발표회 논문집
    • /
    • pp.181-186
    • /
    • 2005
  • Many data sets obtained from surveys or medical trials often include missing observations. When these data sets are analyzed, it is general to use only complete cases. However, it is possible to have big biases or involve inefficiency. In this paper, we consider a method for estimating parameters in logistic linear models involving non-ignorable missing data mechanism. A binomial response and normal exploratory model for the missing data are used. We fit the model using the EM algorithm. The E-step is derived by Metropolis-hastings algorithm to generate a sample for missing data and Monte-carlo technique, and the M-step is by Newton-Raphson to maximize likelihood function. Asymptotic variances of the MLE's are derived and the standard error and estimates of parameters are compared.

  • PDF

강제환기식 돈사의 환기량 추정을 위한 회귀모델의 비교 (Comparison of Regression Models for Estimating Ventilation Rate of Mechanically Ventilated Swine Farm)

  • 조광곤;하태환;윤상후;장유나;정민웅
    • 한국농공학회논문집
    • /
    • 제62권1호
    • /
    • pp.61-70
    • /
    • 2020
  • To estimate the ventilation volume of mechanically ventilated swine farms, various regression models were applied, and errors were compared to select the regression model that can best simulate actual data. Linear regression, linear spline, polynomial regression (degrees 2 and 3), logistic curve, generalized additive model (GAM), and gompertz curve were compared. Overfitting models were excluded even when the error rate was small. The evaluation criteria were root mean square error (RMSE) and mean absolute percentage error (MAPE). The evaluation results indicated that degree 3 exhibited the lowest error rate; however, an overestimation contradiction was observed in a certain section. The logistic curve was the most stable and superior to all the models. In the estimation of ventilation volume by all of the models, the estimated ventilation volume of the logistic curve was the smallest except for the model with a large error rate and the overestimated model.

Modeling the Growth of Neurology Literature

  • Hadagali, Gururaj S.;Anandhalli, Gavisiddappa
    • Journal of Information Science Theory and Practice
    • /
    • 제3권3호
    • /
    • pp.45-63
    • /
    • 2015
  • The word ‘growth’ represents an increase in actual size, implying a change of state. In science and technology, growth may imply an increase in number of institutions, scientists, or publications, etc. The present study demonstrates the growth of neurology literature for the period 1961-2010. A total of 291,702 records were extracted from the Science Direct Database for fifty years. The Relative Growth Rate (RGR) and Doubling Time (Dt.) of neurology literature have been calculated, supplementing with different growth patterns to check whether neurology literature fits exponential, linear, or logistic models. The results of the study indicate that the growth of literature in neurology does not follow the linear, or logistic growth model. However, it follows closely the exponential growth model. The study concludes that there has been a consistent trend towards increased growth of literature in the field of neurology.

Estimating small area proportions with kernel logistic regressions models

  • Shim, Jooyong;Hwang, Changha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권4호
    • /
    • pp.941-949
    • /
    • 2014
  • Unit level logistic regression model with mixed effects has been used for estimating small area proportions, which treats the spatial effects as random effects and assumes linearity between the logistic link and the covariates. However, when the functional form of the relationship between the logistic link and the covariates is not linear, it may lead to biased estimators of the small area proportions. In this paper, we relax the linearity assumption and propose two types of kernel-based logistic regression models for estimating small area proportions. We also demonstrate the efficiency of our propose models using simulated data and real data.

이동통신 단말기 판매 추이에 대한 모형 및 수요예측에 관한 연구 (A Study on Modeling and Forecasting of Mobile Phone Sales Trends)

  • 김민정
    • 한국산학기술학회논문지
    • /
    • 제17권6호
    • /
    • pp.157-165
    • /
    • 2016
  • 하이테크 제품 중에서 이동통신 단말기는 빠른 속도로 혁신이 이루어지고 있으며 이에 따라 제품수명주기도 짧아지고 있다. 이렇게 짧아진 제품수명주기를 정확히 예측하기 위해서는 정확한 수요예측방법론의 선택이 중요하며 이는 전략적 경영계획 수립에 가장 기본적인 요소라고 할 수 있다. 본 연구의 목적은 이동통신 단말기의 전체 확산 수명에 적용될 수 있는 최적의 모형을 제시하는 것이다. 우리는 2013년 3월부터 2014년 8월까지 국내 특정 이동통신 서비스 사업자의 이동통신 단말기 판매 데이터를 활용하여 이동통신 단말기의 판매추이 및 수요예측을 위한 최적의 모형을 제시하고자 한다. 본 연구에서는 네 가지 모형의 성능을 비교분석하였는데 두 가지 S자형 확산모형인 Gompertz와 logistic 모형, 두 가지 비선형 회귀모형인 Michaelis-Menten과 logarithmic 모형을 비교한다. 모형 적합도에 따르면 logistic 모형이 모형일치성에 있어서 다른 세 개의 모형보다 성능이 우수한 것으로 발견되었으며 수요예측모델로는 확산이 정체하기 전까지는 logistic 모형이 우수하며 포화단계에 근접할수록 Gompertz 모형이 적합한 것으로 나타났다. 이러한 분석결과는 이동통신 단말기 시장 규모를 추정하거나 이동통신 단말기의 재고 및 주문관리를 하는데 있어서 유용한 자료로 활용될 수 있을 것이다.

로지스틱회귀분석 모델을 활용한 도시철도 사상사고 사고예측모형 개발에 대한 연구 (Study on Accident Prediction Models in Urban Railway Casualty Accidents Using Logistic Regression Analysis Model)

  • 진수봉;이종우
    • 한국철도학회논문집
    • /
    • 제20권4호
    • /
    • pp.482-490
    • /
    • 2017
  • 본 연구는 사고심각도 분류 및 예측을 위한 철도사고조사 통계기법에 관한 연구이다. 그동안의 선형 회귀분석은 사고 심각도 분석에 어려움이 있었으나 로지스틱회귀분석은 이를 보완할 수 있었다. 데이터마이닝 기법인 로지스틱회귀분석을 활용, 서울지하철(5~8호선) 역사 내 전도사고 중 에스컬레이터 전도사고 발생에 영향을 주는 사고예측 모형 변수는 사고자 연령, 음주여부, 사고 당시상황 및 행동, 핸드레일 잡음 여부였다. 분석의 정확도는 76.7%로 설명되었고 분석방법 결과에 따르면 정확도와 유의수준 측에서 로지스틱회귀분석 방법이 도시철도 사상사고 예측모형을 개발하는데 유용한 데이터마이닝 기법으로 판단된다.