• Title/Summary/Keyword: logging operation system

Search Result 45, Processing Time 0.018 seconds

An Analysis of the Operational Productivity and Cost for the Utilization of Forest-biomass(I) - the Operational time and Productivity - (산림바이오매스 이용을 위한 산림작업 공정 및 비용 분석(I) -작업시간 및 공정 -)

  • Mun, Ho-Seong;Cho, Koo-Hyun;Park, Sang-Jun
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.4
    • /
    • pp.583-592
    • /
    • 2014
  • This study was carried out to investigate the operational time and productivity of logging operation by chain saw, yarder attached on tractor, tower-yarder, mini-truck, mini-forwarder, and chipping operations by mini-chipper, large-chipper in order to develop the efficient logging operation system for utilization of forest-biomass. As a result, the average felling and bucking time using chain saw at the site 1 and 2 was observed to be 182.7 sec/cycle and 518.5 sec/cycle respectively. The average yarding time was 202.5 sec/cycle using yarder attached on tractor and 295.1 sec/cycle using tower-yarder. The average forwarding time was 2,073 sec/cycle using mini-truck and 2,248.4 sec/cycle using mini-forwarder. The operational time of felling and bucking using chain-saw can be delayed according to the direction of fallen trees. The selection of felling direction is very important to yarding operation because the direction between width-yarding and felling are interrelated. Productivity can be improved through educating and training operators in the yarding operations. Mini-forwarder is needed to use because of higher productivity and lower cost than mini-truck. The operational productivity of felling and bucking by chain saw was $66.96m^3/man{\cdot}day$ and $43.86m^3/man{\cdot}day$ at site 1 and 2 respectively. The yarding productivity was $5.68m^3/man{\cdot}day$ by yarder attached on tractor, $10.74m^3/man{\cdot}day$ by tower-yarder. The forwarding productivity was $21.29m^3/man{\cdot}day$ by mini-truck, $28.57m^3/man{\cdot}day$ by mini-forwarder. The chipping productivity was $4.42m^3/man{\cdot}day$ by mini-chipper, $21.87m^3/man{\cdot}day$ by large-chipper.

Development of the Semi-Crawler Type Mini-Forwarder - Design and Manufacture - (반궤도식 산림작업차 개발(I) - 설계 및 제작 -)

  • Kim, Jae-Hwan;Park, Sang-Jun
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.2
    • /
    • pp.154-164
    • /
    • 2011
  • This study was conducted to develop the semi-crawler type mini-forwarder that can be operated comfortable small-scale logging operation in the steep terrain and also used at a variety of operations such as the civil work in erosion control and forest-road. Considering the minimum turning radius and the width of forest operation road, the total length, width and loading capacity of the semi-crawler type mini-forwarder is 5,750 mm, 1,900 mm and $2.5m^{3}$, respectively. The maximum engine power is 96ps at 3600 rpm. Selected hydraulic pumps are consists of two main pumps and two sub-main pumps. Main hydraulic pumps are utilized to running motor of the front wheel and rear crawler. Sub-main pumps are utilized to the actuation parts such as steering, crane, out-rigger and dump cylinder. The transmission was adapted as the HST (Hydro-Static Transmission) system. The driving parts are designed and manufactured as the front wheel type and the rear crawler type. The steering type was manufactured as the ackerman type. Driving control parts type was designed and manufactured as driver's seat type of normal cars. It is also attached on auxiliary equipments such as winch, log grapple and out-rigger. The traveling speed of the semi-crawler type mini-forwarder in forest road was 5.3 km/hr to 7.7 km/hr.

Paper Duplication Method Supported by Task (태스크 기반 이중화 방안)

  • Lee, Jong-Chan;Park, Sang-Joon;Kang, Kwon-Il
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.1C
    • /
    • pp.103-111
    • /
    • 2002
  • In RNC of IMT-2000, main control processors such as ASP, ACP and OMP are responsible for call control function, and the high reliability and real-time property should be provided for it. So, the study of real-time fault-tolerant for it is needed. In this paper, we proposes an Task based duplication method, in which Tasks in active side operated on message unit and send the updated data to standby side after operation, log in the message to standby side for recovery during take-over. This scheme decreases the dual down and the complexity of synchronization procedure, and performs the synchronization more exactly because Tasks control the synchronization of system. This paper also proposes the fault detection and the fault handing method for effective implementation of Task based duplication. This scheme focus on increasing the fault detection rate and intercepting originally that fault data is send to standby side.

A Load Emulator for Low-power Embedded Systems and Its Application (저전력 내장형 시스템을 위한 부하의 전력 소모 에뮬레이션 시스템과 응용)

  • Kim, Kwan-Ho;Chang, Nae-Hyuck
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.6
    • /
    • pp.37-48
    • /
    • 2005
  • The efficiency of power supply circuits such as DC-DC converters and batteries varies on the trend of the power consumption because their efficiencies are not fixed. To analyze the efficiency of power supply circuits, we need the temporal behavior of the power consumption of the loads, which is dependent on the activity factors of the devices during the operation. Since it is not easy to model every detail of those factors, one of the most accurate power consumption analyses of power supply circuits is measurement of a real system, which is expensive and time consuming. In this paper, we introduce an active load emulator for embedded systems which is capable of power measurement, logging, replaying and synthesis. We adopt a pattern recognition technique for data compression in that long-term behaviors of power consumption consist of numbers of repetitions of short-term behaviors, and the number of short-term behaviors is generally limited to a small number. We also devise a heterogeneous structure of active load elements so that low-speed, high-current active load elements and high-speed, low-current active load elements may emulate large amount and fast changing power consumption of digital systems. For the performance evaluation of our load emulator, we demonstrate power measurement and emulation of a hard drive. As an application of our load emulator, it is used for the analysis of a DC-DC converter efficiency and for the verification of a low-power frequency scaling policy for a real-time task.

Development of a Mobile Tower-yarder with Tractor (I) - Design and Manufacture - (트랙터부착형 타워집재기 개발(I) - 설계 및 제작-)

  • Park, Sang-Jun;Kim, Bo-Kyun
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.1
    • /
    • pp.61-70
    • /
    • 2008
  • This study was conducted to develop a mobile tower-yarder with tractor for agriculture and forestry that is the efficient yarder in steep terrains, thinning operation and small scale logging operation. It was designed and manufactured that the power source of tower-yarder is equiped three hydraulic pump connected to PTO of tractor, and three hydraulic pump is used to operate the four motor for drum, the cylinder for clutch of interlocker, the cylinder for tower expanding and the out-rigger cylinder. It was to adopt the running skyline system and the inter-lock function, and to equip the double capstan drum, the storage drum and the clutch for interlock in the development of tower-yarder. It was to develop the tower-yarder which the winch torque of double-capstan drum, the traction force of double-capstan drum, the number of rotation of double-capstan drum and the line speed is $191kg{\cdot}m$, 1,910 kgf, 220.5 rpm and 138.5 m/min, respectively. And it was known that the optimum flange diameter of the main and haulback storage drum is about 360 mm and about 460 mm in order to storage the main line length of 250m and the haulback line length of 450 m. The carriage was made to adopt the running skyline system and to equip the lock function in order to the convenience of chocking and the fall down preventing of tree. It was provided to develop the wire remote controller for the inter-lock function, the convenience of control and the efficiency of yarding. In development process, this tower-yarder was attached the 3-point linkage hitch equipment and the tire wheel for the traction and moving of tower-yarder. Also, it was equipped that the out-rigger and the guy line in order to raise the safety and efficiency of yarding of tower-yarder.