• Title/Summary/Keyword: log-normal frailty

Search Result 2, Processing Time 0.015 seconds

On prediction of random effects in log-normal frailty models

  • Ha, Il-Do;Cho, Geon-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.1
    • /
    • pp.203-209
    • /
    • 2009
  • Frailty models are useful for the analysis of correlated and/or heterogeneous survival data. However, the inferences of fixed parameters, rather than random effects, have been mainly studied. The prediction (or estimation) of random effects is also practically useful to investigate the heterogeneity of the hospital or patient effects. In this paper we propose how to extend the prediction method for random effects in HGLMs (hierarchical generalized linear models) to log-normal semiparametric frailty models with nonparametric baseline hazard. The proposed method is demonstrated by a simulation study.

  • PDF

Additive hazards models for interval-censored semi-competing risks data with missing intermediate events (결측되었거나 구간중도절단된 중간사건을 가진 준경쟁적위험 자료에 대한 가산위험모형)

  • Kim, Jayoun;Kim, Jinheum
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.4
    • /
    • pp.539-553
    • /
    • 2017
  • We propose a multi-state model to analyze semi-competing risks data with interval-censored or missing intermediate events. This model is an extension of the three states of the illness-death model: healthy, disease, and dead. The 'diseased' state can be considered as the intermediate event. Two more states are added into the illness-death model to incorporate the missing events, which are caused by a loss of follow-up before the end of a study. One of them is a state of the lost-to-follow-up (LTF), and the other is an unobservable state that represents an intermediate event experienced after the occurrence of LTF. Given covariates, we employ the Lin and Ying additive hazards model with log-normal frailty and construct a conditional likelihood to estimate transition intensities between states in the multi-state model. A marginalization of the full likelihood is completed using adaptive importance sampling, and the optimal solution of the regression parameters is achieved through an iterative quasi-Newton algorithm. Simulation studies are performed to investigate the finite-sample performance of the proposed estimation method in terms of empirical coverage probability of true regression parameters. Our proposed method is also illustrated with a dataset adapted from Helmer et al. (2001).