• Title/Summary/Keyword: lod

Search Result 739, Processing Time 0.028 seconds

Vitamin C Quantification of Korean Momordica charantia by Cultivar, Harvest Time, and Maturity (국내산 여주의 지역별, 수확시기별, 숙기별 Vitamin C 함량)

  • Jeong, Yun Sook;Lee, Sang Hoon;Song, Jin;Hwang, Kyung-A;Noh, Geon Min;Hwang, In Guk
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.4
    • /
    • pp.474-479
    • /
    • 2016
  • This study aimed to investigate the concentration of vitamin C in Momordica charantia (MC) by cultivar, harvest time, and maturity. The methods for determining vitamin C levels were validated by measuring their linearity, specificity, limit of detection (LOD), limit of quantification (LOQ), precision, and accuracy using HPLC. Results showed high linearity in the calibration curve, with a coefficient of correlation ($R^2$) of 0.9994. The LOD and LOQ values for vitamin C were 0.05 and $0.16{\mu}g/mL$, respectively. The relative standard deviations (RSDs) for intra- and inter-day precision of vitamin C measurements were 2.34 and 1.34%, respectively. Depending on cultivar, the concentration of vitamin C in MC varied from 20.75~107.31 mg/100 g, fresh weight, with an average level $68.85{\pm}25.57mg/100g$, FW. When MC was analyzed by harvest time, the 20150612 MC showed the highest amount of vitamin C ($113.20{\pm}1.89mg/100g$, FW). On the other hand, the highest vitamin C content by maturity was $48.59{\pm}0.87mg/100g$, FW (15 day old MC). This information on the comparative vitamin C levels of MC might be useful to food scientists and should be explored for functional food development.

Vitamin C Quantification of Korean Sweet Potatoes by Cultivar and Cooking Method (국내산 고구마의 품종 및 조리방법별 비타민 C 함량)

  • Hwang, In Guk;Byun, Jae Yoon;Kim, Kyung Mi;Chung, Mi Nam;Yoo, Seon Mi
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.6
    • /
    • pp.955-961
    • /
    • 2014
  • This study was carried out to investigate the amounts of vitamin C in 22 sweet potato cultivars cultivated in Korea as well as evaluate the effects of cooking methods on vitamin C contents. Methods for determining vitamin C was validated by determining linearity, specificity, limit of detection (LOD), limit of quantification (LOQ), precision, and accuracy using HPLC. Results showed high linearity in the calibration curve with a coefficient of correlation ($R^2$) of 0.9999. The LOD and LOQ values for ascorbic acid (AA) were 0.03 and $0.10{\mu}g/mL$, respectively. The relative standard deviations (RSDs) for intra- and inter-day precision of AA were less than 5%. The recovery rates of AA and dehydroascorbic acid (DHA) were in the range from 98.21~98.64 and 98.28~100.68%, respectively. Depending on cultivar, contents of AA, DHA, and total ascorbic acid (TA) in sweet potatoes varied in the range from 37.76 (Sinyulmi)~89.25 (Juhwangmin), 23.37 (Sinjami)~63.94 (Sinyulmi), and 68.52 (Sinjami)~115.95 (Juhwangmin) mg/100 g, respectively, and their average levels were $56.98{\pm}12.53$, $36.46{\pm}9.03$, and $93.44{\pm}12.00mg/100g$, respectively. The average TA levels were also dependent on flesh color, whish was significantly higher in general sweet potato and orange sweet potato than in purple sweet potato. Steaming, baking, and frying processes significantly reduced AA (10.61~58.41%), DHA (2.57~52.81%), and TA (14.54~49.92%) contents in sweet potatoes. The highest reduction of AA, DHA, and TA contents was observed after baking, followed by steaming and frying. We expect that the basic information provided by this study will be useful to plant breeders and food scientists.

Modification and Validation of Analytical Method for Oxypaeoniflorin and Paeoniflorin in Moutan Cortex Radicis Extract (목단피 추출물의 Oxypaeoniflorin 및 Paeoniflorin의 분석법 개선 및 검증)

  • Choi, Seung-Hyun;Yoo, Chang-Kil;Hwang, Ji-Hyun;Lee, Gi-Bbeum;Lee, Young-Jin;Lee, Boo-Yong;Lee, Ok-Hwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.9
    • /
    • pp.1091-1096
    • /
    • 2017
  • The aim of this study was the validation of a modified analytical method for determination of oxypaeoniflorin and paeoniflorin in Moutan Cortex Radicis extract. For validation of the analytical method, we modified established analytical methods and validated improvement. For validation, the specificity, linearity, precision, accuracy, limit of detection (LOD), and limit of quantification of oxypaeoniflorin and paeoniflorin were measured by high performance liquid chromatography. The results show that the correlation coefficients of the calibration curve for oxypaeoniflorin and paeoniflorin were 1.0000 and 0.9998, respectively. The LOD for oxypaeoniflorin and paeoniflorin were $0.23{\mu}g/mL$ and $0.25{\mu}g/mL$, respectively. The inter-day and intra-day precision values of oxypaeoniflorin and paeoniflorin were 0.70~3.19% and 1.74~2.43%, and 0.32~0.92% and 0.62~2.28%, respectively. The inter-day and intra-day accuracies of oxypaeoniflorin and paeoniflorin were 98.33~102.11% and 97.72~118.12%, and 98.44~101.56% and 97.10~112.00%, respectively. Therefore, the analytical method was validated for the detection of oxypaeoniflorin and paeoniflorin in Moutan Cortex Radicis.

Simultaneous HPLC Determination of Marker Compounds for the Standardization of Hedyotis diffusa (백운풀의 지표성분 설정 및 품질표준화를 위한 정량 분석법)

  • Bang, Han-Yeol;Yang, Eun-Ju;Kim, Jeong-Ah;Song, Kyung-Sik
    • Journal of Life Science
    • /
    • v.23 no.8
    • /
    • pp.1025-1031
    • /
    • 2013
  • From a 95% ethanolic extract of H. diffusa, four marker compounds (HD1~HD4) were isolated, which were relatively unique and exist in comparably high contents. The structures of marker compounds were identified as digitolutein (1), 2-hydroxy-3-methylanthraquinone (2), (E/Z)-6-O-p-coumaroyl scandoside methyl ester (4:1 mixture) (3), and (E/Z)-6-O-p-methoxycinnamoyl scandoside methyl ester (4:1 mixture) (4), respectively, on the basis of $^{13}C$ and $^1H$-NMR analyses. The calibration curves of marker compounds showed high linearity, as their correlation coefficient ($R^2$) were in the range of 0.9991~0.9999. In addition, the limit of detection (LOD) and the limit of quantification (LOQ) were $0.03{\sim}0.07{\mu}g/ml$ and $0.099{\sim}0.231{\mu}g/ml$, respectively. The intra-day/inter-day precision and accuracy were 0.23~2.00%/0.25~1.16% and 94.60~108.44%/94.73-110.23%, respectively. The optimal HPLC conditions for the simultaneous quantification of HD1~HD4 were as follows: stationary phase; Merck Chromolith RP-18e ($100{\times}4.6mm$, $5{\mu}m$), column temp.; room temperature, UV detection at 280 nm, flow rate; 2.0 ml/min, injection volume; $10{\mu}l$, mobile phase; start with the mixture of 80% solvent A ($H_2O$ containing 0.5% acetic acid) and 20% solvent B (methanol containing 0.5% acetic acid) and gradually decrease solvent A to 40% in 9 min., then retain this condition to 18 min. Under the HPLC condition, the four marker compounds 1~4 were successfully separated without any interference of other constituents. The results obtained in this study are expected to be helpful for the development of nutraceutics and natural medicines and for the quality control of this plant.

Chromosomal Localization and Mutation Detection of the Porcine APM1 Gene Encoding Adiponectin (Adiponectin을 암호화하는 돼지 APM1 유전자의 염색체상 위치파악과 돌연변이 탐색)

  • Park, E.W.;Kim, J.H.;Seo, B.Y.;Jung, K.C.;Yu, S.L.;Cho, I.C.;Lee, J.G.;Oh, S.J.;Jeon, J.T.;Lee, J.H.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.537-546
    • /
    • 2004
  • Adiponectin is adipocyte complement-related protein which is highly specialized to play important roles in metabolic and honnonal processes. This protein, called GBP-28, AdipoQ, and Acrp30, is encoded by the adipose most abundant gene transcript 1 (APM1) which locates on human chromosome 3q27 and mouse chromosome 16. In order to determine chromosomal localization of the porcine APM1, we carried out PCR analysis using somatic cell hybrid panel as well as porcine whole genome radiation hybrid (RH) panel. The result showed that the porcine APM1 located on chromosome 13q41 or 13q46-49. These locations were further investigated with the two point analysis of RH panel, revealed the most significant linked marker (LOD score 20.29) being SIAT1 (8 cRs away), where the fat-related QTL located. From the SSCP analysis of APM1 using 8 pig breeds, two distinct SSCP types were detected from K~ native and Korean wild pigs. The determined sequences in Korean native and Korean wild pigs showed that two nucleotide positions (T672C and C705G) were substituted. The primary sequence of the porcine APM1 has 79 to 87% identity with those of human, mouse, and bovine APM1. The domain structures of the porcine APM1 such as signal sequence, hypervariable region, collagenous region. and globular domain are also similar to those of mammalian genes.

Establishment of Choline Analysis in Infant Formulas and Follow-up Formulas by Ion Chromatograph (이온크로마토그래프를 이용한 조제유류 및 영아용·성장기용 조제식 중 콜린 함량 분석법 연구)

  • Hwang, Kyung Mi;Ham, Hyeon Suk;Lee, Hwa Jung;Kang, Yoon Jung;Yoon, Hae Seong;Hong, Jin Hwan;Lee, Hyoun Young;Kim, Cheon Hoe;Oh, Keum Soon
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.5
    • /
    • pp.411-417
    • /
    • 2017
  • This study was conducted to establish the analysis method for the contents of choline in infant formulas and follow-up formulas by ion chromatograph (IC). To optimize the method, we compared several conditions for extraction, purification and instrumental measurement using spiked samples and certified reference material (CRM; NIST SRM 1849a) as test materials. IC method for choline was established using Ion Pac CG column and 18 mM $H_2SO_4$ mobile phase. The parameters of validation were specificity, linearity, LOD, LOQ, recovery, accuracy, precision and repeatability. The specificity was confirmed by the retention time and the linearity, $R_2$ was over 0.999 in range of 0.5~10 mg/L. The detection limit and quantification limit were 0.14, 0.43 mg/L. The accuracy and precision of this method using CRM were 95%, 2.1% respectively. Optimized methods were applied in sample analysis to verify the reliability. All the tested products were acceptable contents of choline compared with component specification for nutrition labeling. The standard operating procedures were prepared for choline to provide experimental information and to strengthen the management of nutrient in infant formula and follow-up formula.

Development of a Simultaneous Analytical Method for Determination of Trinexapac-ethyl and Trinexapac in Agricultural Products Using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 식물생장조절제 Trinexapac-ethyl과 대사산물 Trinexapac의 동시분석법 개발)

  • Jang, Jin;Kim, Heejung;Ko, Ah-Young;Lee, Eun-Hyang;Ju, Yunji;Chang, Moon-Ik;Rhee, Gyu-Seek;Suh, Saejung
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.4
    • /
    • pp.318-327
    • /
    • 2015
  • BACKGROUND: Trinexapac-ethyl is a plant growth regulator (PGR) that inhibits the biosynthesis of plant growth hormone (gibberellin). It is used for the prevention of lodging, increasing yields of cereals, and reducing mowing of turf. The experiment was conducted to establish a determination method for trinexapac-ethyl and its metabolites trinexapac in agricultural products using LC-MS/MS.METHODS AND RESULTS: Trinexapac-ethyl and trinexapac were extracted from agricultural products with methanol/ distilled water and the extract was partitioned with dichloromethane and then detected by LC-MS/MS. Limit of detection(LOD) was 0.003 mg/kg and limit of quantification(LOQ) was 0.01 mg/kg, respectively. Matrix matched calibration curves were linear over the calibration ranges (0.01-1.0 mg/L) for all the analytes into blank extract withr2> 0.997. For validation purposes, recovery studies were carried out at three different concentration levels (LOQ, 10LOQ, 50LOQ,n=5). Recoveries of trinexapacethyl and trinexapac were within the range of 73.6-106.9%, 72.7-99.2%, respectively. The relative standard deviations (RSDs) were less than 9.0%. All values were consistent with the criteria ranges requested in the CODEX guideline(CAC/GL 40, 2003).CONCLUSION: The proposed analytical method was accurate, effective and sensitive for trinexapac-ethyl and trinexapac determination and it can be used to as an official method in Korea.

Development and Validation of Analytical Method for Determination of Biphenyl Analysis in Foods (식품 중 비페닐 분석법 개발 및 유효성 검증)

  • Kim, Jung-Bok;Kim, Myung-Chul;Song, Sung-Woan;Shin, Jae-Wook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.4
    • /
    • pp.459-464
    • /
    • 2017
  • Biphenyl is used as an intermediate in the production of crop protection products, a solvent in pharmaceutical production, and as a component in the preservation of citrus fruits in many countries. Biphenyl is not authorized for use and also does not have standards or specifications as a food additive in Korea. National and imported food products are likely to contain biphenyl. Therefore, control and management of these products is required. In this study, a simple analytical method was developed and validated using HPLC to determine biphenyl in food. These methods are validated by assessing certain performance parameters: linearity, accuracy, precision, recovery, limit of detection (LOD), and limit of quantitation (LOQ). The calibration curve was obtained from 1.0 to $100.0{\mu}g/mL$ with satisfactory relative standard deviations (RSD) of 0.999 in the representative sample (orange). In the measurement of quality control (QC) samples, accuracy was in the range of 95.8~104.0% within normal values. The inter-day and inter-day precision values were less than 2.4% RSD in the measurement of QC samples. Recoveries of biphenyl from spiked orange samples ranged from 92.7 to 99.4% with RSD between 0.7 and 1.7% at levels of 10, 50, and $100{\mu}g/mL$. The LOD and LOQ were determined to be 0.04 and $0.13{\mu}g/mL$, respectively. These results show that the developed method is appropriate for biphenyl identification and can be used to examine the safety of citrus fruits and surface treatments containing biphenyl residues.

Method Validation for Determination of Lignan Content in Fermented Sesame by Bioconversion (생물전환된 참깨 발효물의 Lignan 화합물의 분석법 검증)

  • Jung, Tae-Dong;Kim, Jae-Min;Choi, Sun-Il;Choi, Seung-Hyun;Cho, Bong-Yeon;Lee, Jin-Ha;Lee, Sang Jong;Park, Seon Ju;Heo, In Young;Lee, Ok-Hwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.5
    • /
    • pp.646-652
    • /
    • 2017
  • The aim of this study was to investigate method validation for determination of sesamol, sesamin, and sesamolin in non-fermented sesame and fermented sesame by bioconversion. For validation, the specificity, linearity, precision, accuracy, limits of detection (LOD), and quantification (LOQ) of sesamol, sesamin, and sesamolin were measured by HPLC. Linearity tests showed that the coefficients of calibration correlation ($R^2$) for sesamol, sesamin, and sesamolin were 0.9999. Recovery rates of lignan contents in non-fermented and fermented sesame were high in the ranges of 100.27~115.10% and 98.43~114.90%, respectively. The inter-day and intra-day precisions of sesamin and sesamolin analyses for non-fermented and fermented sesame were 0.27~1.94% and 0.25~0.69%, respectively. The LOD and LOQ were $0.23{\sim}0.34{\mu}g/g$ and $0.70{\sim}1.03{\mu}g/g$, respectively. These results indicate that the validated method is appropriate for the determination of sesamol, sesamin, and sesamolin.

Quantitative Analysis of Vitamin B5 and B6 Using High Performance Liquid Chromatography (고속액체크로마토그래피를 이용한 비타민 B5 및 B6의 정량 분석)

  • Kim, Gi-Ppeum;Hwang, Young-Sun;Choung, Myoung-Gun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.10
    • /
    • pp.1186-1194
    • /
    • 2017
  • Recently, many people have demanded reliable nutritional data even for minor-components. On the other hand, an analytical method for the analyses of vitamin $B_5$ and $B_6$ is lacking. Therefore, this study attempted to validate with accuracy and precision the analysis of vitamin $B_5$ and $B_6$ using a high-performance liquid chromatography (HPLC) method. The vitamin $B_5$ and $B_6$ contents were analyzed using an Agilent 1260 series HPLC system. YMC-Pack ODS-AM ($250{\times}4.6mm$ I.D.) and YMC-Pack Pro RS $C_{18}$ ($250{\times}4.6mm$ I.D.) columns were used for the analyses of vitamin $B_5$ and $B_6$, respectively. In the case of vitamin $B_5$, the flow rate was set to 1.0 mL/min by isocratic elution using the 50 mM $KH_2PO_4$ solution (pH 3.5)/acetonitrile (ACN) (95:5, v/v) with monitoring at 200 nm using HPLC/DAD, whereas the flow rate for vitamin $B_6$ was set to 1.0 mL/min of flow rate by isocratic elution using a 20 mM $CH_3CO_2Na$ solution (pH 3.6)/ACN (97:3, v/v) with monitoring by excitation at 290 nm and emission at 396 nm using HPLC/FLD. The column temperature was set to $30^{\circ}C$. The injection volume was $20{\mu}L$ for each experiment. The specificity of the accuracy and precision for vitamin $B_5$ and $B_6$ were also validated by HPLC. The results showed high linearity in the calibration curve for vitamin $B_5$ ($R^2=0.9998^{{\ast}{\ast}}$), the limit of detection (LOD) and limit of quantitation (LOQ) were 0.4 mg/L and 1.3 mg/L, respectively, In contrast, for the calibration curve of vitamin $B_6$, which showed high linearity ($R^2=0.9999^{{\ast}{\ast}}$), the LOD and LOQ were 0.006 mg/L and 0.02 mg/L, respectively.