• Title/Summary/Keyword: locomotion

Search Result 438, Processing Time 0.031 seconds

Smart Phone Robot Made of Smart Soft Composite (SSC)

  • Wang, Wei;Rodrigue, Hugo;Lee, Jang-Yeob;Han, Min-Woo;Ahn, Sung-Hoon
    • Composites Research
    • /
    • v.28 no.2
    • /
    • pp.52-57
    • /
    • 2015
  • Soft morphing robotics making use of smart material and based on biomimetic principles are capable of continuous locomotion in harmony with its environment. Since these robots do not use traditional mechanical components, they can be built to be light weight and capable of a diverse range of locomotion. This paper illustrates a flexible smart phone robot made of smart soft composite (SSC) with inchworm-like locomotion capable of two-way linear motion. Since rigid components are embedded within the robot, bending actuators with embedded rigid segments were investigated in order to obtain the maximum bending curvature. To verify the results, a simple mechanical model of this actuator was built and compared with experimental data. After that, the flexible robot was implemented as part of a smart phone robot where the rigid components of the phone were embedded within the matrix. Then, experiments were conducted to test the smart phone robot actuation force under different deflections to verify its load carrying capability. After that, the communication between the smart phone and robot controller was implemented and a corresponding phone application was developed. The locomotion of the smart phone robot actuated through an independent controller was also tested.

Locomotion Control of 4 Legged Robot Using HyperNEAT (HyperNEAT를 이용한 4족 보행 로봇의 이동 제어)

  • Jang, Jae-Young;Hyun, Soo-Hwan;Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.132-137
    • /
    • 2011
  • The walking mobility with stability of 4 legged robots is the distinguished skills for many application areas. Planning gaits of efficient walking for quadruped robots is an important and challenging task. Especially, autonomous generation of locomotion is required to manage various robot models and environments. In this paper, we propose an adaptive locomotion control of 4 legged robot for irregular terrain using HyperNEAT. Generated locomotion is executed and analysed using ODE based Webots simulation for the 4 legged robot which is built by Bioloid.

A study on locomotion of a mobile robot by a pattern recognition (패턴 인식에 의한 이동 로보트의 주행에 관한 연구)

  • 신중섭;정동명;장원석;홍승홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.79-82
    • /
    • 1987
  • This paper describes the mobile robot system to recognize the guidance tape, and presents the locomotion algorithm. It is composed of image processing unit, A/ID converter and camera. This system converts video image to binary image by setting an optimal threshold and obtains the parameters to move the robot. The mobile robot moves according to the programmed route in memory. But after recognized the obstacle on the locomotion route, this system constructs the new route and the robot moves following the new route.

  • PDF

A Comparative Study of Evolutionary Computation Techniques for Locomotion Control of Modular Snake-like Robots (모률라 뱀형 로봇의 이동 제어에 대한 진화연산 기법 비교)

  • Jang, Jae-Young;Hyun, Soo-Hwan;Seo, Ki-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.6
    • /
    • pp.604-611
    • /
    • 2009
  • Modular snake-like robots are robust for failure and have flexible locomotion for environments, but are difficult to control. Various phase and evolutionary approaches for modular robots have been studied for many years, but there are few comparisons among these methods. In this paper, Phase, GAps, GA and GP approaches are implemented and compared for flat, stairs, and slope environments. In addition, simulations of the locomotion evolution for modular snake-like robot are executed in Webots environments.

Development of Assistive Mobility Equipment Modeled on Pedal Crawling Locomotion of Terrestrial Gastropod

  • Morikawa, Hirohisa;Fujihara, Ryousen;Fukaya, Yuhya;Kobayashi, Shunichi;Sakai, Hiroshi
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.79-80
    • /
    • 2003
  • In order to develop an indoor assistive mobility equipment, we paid attention to the mechanism of locomotion in a snail, or a terrestrial gastropod molluscs. It is known that the snail moves by propagation of a pedal wave generating on a pedal surface of the snail and a pedal locomotion has flexibility far ground condition. An air mattress with a function of a pedal-like locomotion mechanism was developed and the performance of the pedal locomotory air mattress as mobility equipment was discussed.

  • PDF

Analysis for Movement Characteristics of Pneumatic Impulsive Actuator for Robotic Colonoscope (내시경용 로봇을 위한 공압구동기의 운동특성 해석)

  • Lee, Jin-Hui;Jeong, Yeon-Gu;Gang, Byeong-Gyu;Park, Jong-O
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1638-1644
    • /
    • 2002
  • A novel locomotion using the pneumatic impulsive actuator was proposed for robotic colonoscope. This locomotion showed good moving performance in the environment of rigid pipe, however, the displacement per one impact(step displacement) is greatly reduced due to the low stiffness and high damping characteristics of the colon. Therefore, the modeling technique based on spring and damping system is studied to predict the step displacement and some parametric studies are carried out to investigate main parameters that influence the step displacement of locomotion. Based on simulation result, a new locomotion to control the resistance force is suggested and fabricated. Through the experiment on the colon, the usefulness of modeling technique is confirmed and successful improvement of moving characteristics is achieved.

Biped Robot Control for Stable Walking (바이패드 로봇의 안정적인 거동을 위한 제어)

  • 김경대;박종형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.311-314
    • /
    • 1995
  • Biped locomotion can be simply modeled as a linear inverted pendulum mode. This model considers only the CG (center of gravity) of the entire system. But in real biped robot systems, the free-leg motion dynamics is not negligible. So if its dynamics is not considered in designing the reference CG motion, it is badly influence to the ZMP(zero moment point) position of the biped robot walking in the sagittal plane. Therefore, we modeled the biped locomotion similar to the linear inverted pendulum mode but considered the predetermined free-leg dynamics. To verify that the proposed biped locomotion is more stable than the linear inverted pendulum mode, we constructed a biped robot simulator and designed a serco controller to track both the reference motion of the free leg and the reference motion of CG of the biped robot using the computed torque control low. And through simulations, we verified that the proposed walking is better in stability than the one based on the linear inverted pendulum mode.

  • PDF

Design of a Virtual Walking Machine for Virtural Reality Interface (가상현실 대화용 가상걸음 장치의 설계)

  • 윤정원;류제하
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1044-1051
    • /
    • 2004
  • This paper described a novel locomotion interface that can generate infinite floor for various surface, named as virtual walking machine. This interface allows users to participate in a life-like walking experience in virtual environments, which include various terrains such as plains, slopes and stair ground surfaces. The interface is composed of two three-DOF (X, Y, Yaw) planar devices and two four-DOF (Pitch, Roll, Z, and relative rotation) footpads. The planar devices are driven by AC servomotors for generating fast motions, while the footpad devices are driven by pneumatic actuators for continuous support of human weight. To simulate natural human walking, the locomotion interface design specification are acquired based on gait analysis and each mechanism is optimally designed and manufactured to satisfy the given requirements. The designed locomotion interface allows natural walking(step: 0.8m, height: 20cm, load capability: 100kg, slope:30deg) for various terrains.

Predictive Motion Control Method for Continuous Locomotion of Leg-Wheel Robot

  • Masatoshi Kumagai;Takayuki Takahashi;Wang, Zhi-Dong;Michihiko Shoji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.147.5-147
    • /
    • 2001
  • This paper describes a gait algorithm and a velocity limitation method for a Leg-Wheel Robot. The gait algorithm enables the robot to preserve continuous locomotion even if the velocity command varies extensively. The velocity limitation method restricts the commanded velocity when it exceeds the mechanical limitation of the robot. Combined use of the velocity limitation method with the gait algorithm ensures the continuity of locomotion, and makes the gait pattern efficient with a long step length and low frequency of leg phase change. These methods can be applied to locomotion on unexplored rough terrain even if the range of roughness is unknown.

  • PDF

Swimming Plans for a Bio-inspired Articulated Underwater Robot (생체모방형 수중다관절 로봇의 유영계획)

  • Kim, Hee-Jong;Lee, Jihong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.782-790
    • /
    • 2013
  • In this paper, we propose a better solution for swimming plans of an articulated underwater robot, Crabster, with a view point of biomimetics. As a biomimetic model of underwater organisms, we chose diving beetles structurally similar to Crabster. Various swimming locomotion of the diving beetle has been observed and sorted by robotics technology through experiments with a high-speed camera and image processing software Image J. Subsequently, coordinated patterns of rhythmic movements of the diving beetle are reproduced by simple control parameters in a parameter space which make it easy to control trajectories and velocities of legs. Furthermore, a simulation was implemented with an approximated model to predict the motion of the robot under development based on the classified forward and turning locomotion. Consequently, we confirmed the applicability of parameterized leg locomotion to the articulated underwater robot through the simulated results by the approximated model.