• 제목/요약/키워드: location fingerprint

검색결과 111건 처리시간 0.026초

특이점과 Gabor 필터를 이용한 효과적인 지문 이미지 분류 (Fingerprint Classification using Singular Points and Gabor filter)

  • 이민섭;이철회
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.321-324
    • /
    • 2002
  • In this paper, we introduce a new approach to fingerprint classification based on both singular points and gabor features. We find singular points of fingerprint image by using squared direction field and Poincare index. Then, the input fingerprint image can be classified into one of 5 classes using the number of singular points and their location. However, it is often impossible to classify the fingerprint image because the numbers and the position of the singular points are not correct due to noise. In this case Gabor features are extracted from unclassified images using Gator filter and they are classified by using k-NN classifier. This method has been tested on the NIST-4 database. The experimental results show that the proposed method is reliable.

  • PDF

Wi-Fi 핑거프린트 기반 실내 이동 경로 데이터 생성 방법 (Wi-Fi Fingerprint-based Indoor Movement Route Data Generation Method)

  • 윤창표;황치곤
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.458-459
    • /
    • 2021
  • 최근, 실내 위치 기반 서비스에서 정확한 서비스를 위해 Wi-Fi 핑거프린트 기반의 딥러닝 기술을 이용한 연구가 이루어지고 있다. 딥러닝 모델 중에서 과거의 정보를 기억할 수 있는 RNN 모델은 실내측위에서 연속된 움직임을 기억할 수 있어 측위 오차를 줄일 수 있다. 이때 학습 데이터로서 연속적인 순차 데이터를 필요로 한다. 그러나 일반적으로 Wi-Fi 핑거프린트 데이터의 경우 특정 위치에 대한 신호들만으로 관리되기 때문에 RNN 모델의 학습데이터로 사용이 부적절하다. 본 논문은 RNN 모델의 순차적인 입력 데이터의 생성을 위해 클러스터링을 통한 영역 데이터로 확장된 Wi-Fi 핑거프린트 데이터 기반 이동 경로의 예측을 통한 경로 생성 방법에 대해 제안한다.

  • PDF

Measurement-based AP Deployment Mechanism for Fingerprint-based Indoor Location Systems

  • Li, Dong;Yan, Yan;Zhang, Baoxian;Li, Cheng;Xu, Peng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권4호
    • /
    • pp.1611-1629
    • /
    • 2016
  • Recently, deploying WiFi access points (APs) for facilitating indoor localization has attracted increasing attention. However, most existing mechanisms in this aspect are typically simulation based and further they did not consider how to jointly utilize pre-existing APs in target environment and newly deployed APs for achieving high localization performance. In this paper, we propose a measurement-based AP deployment mechanism (MAPD) for placing APs in target indoor environment for assisting fingerprint based indoor localization. In the mechanism design, MAPD takes full consideration of pre-existing APs to assist the selection of good candidate positions for deploying new APs. For this purpose, we first choose a number of candidate positions with low location accuracy on a radio map calibrated using the pre-existing APs and then use over-deployment and on-site measurement to determine the actual positions for AP deployment. MAPD uses minimal mean location error and progressive greedy search for actual AP position selection. Experimental results demonstrate that MAPD can largely reduce the localization error as compared with existing work.

Wi-Fi 전파 지문 기반 다차원 학습 데이터 구성에 관한 연구 (A Study on Multi-Dimensional learning data composition based on Wi-Fi radio fingerprint)

  • 윤창표;황치곤
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 추계학술대회
    • /
    • pp.639-640
    • /
    • 2018
  • 현재 실내 측위 분야에서 전파 지문을 이용하여 위치를 확인하는 기술이 광범위하게 사용하고 있다. 이때 성공적인 위치 확인을 위해서는 학습과 테스트에 필요한 데이터의 구성 및 다차원 데이터 구성이 필요하다. 즉 무선 AP, BLE iBeacon, Mobile 단말 등의 다양한 주변 전파 지문의 변화로 발생할 수 있는 환경 변화에 대응할 수 있는 위치 데이터 수집 및 데이터 관리 기술이 요구된다. 따라서 본 논문에서는 측위에 필요한 전파 지문의 환경 변화에 덜 민감한 다차원 데이터를 구성하고 관리하는 기법을 제안한다.

  • PDF

화재정보 확인과 대피자 위치추적을 위한 서버 독립형 시스템 개발 (Development of a Server-independent System to Identify and Communicate Fire Information and Location Tracking of Evacuees)

  • 이치주;이태관
    • 한국건축시공학회지
    • /
    • 제21권6호
    • /
    • pp.677-687
    • /
    • 2021
  • 화재가 발생했을 때, 대피자가 화재 위치와 규모 등의 화재정보, 그리고 출구 위치와 대피자 스스로의 위치를 확인할 수 있다면, 신속하게 대피할 수 있을 것이다. 본 연구에서는 화재정보를 대피자에게 전송하고 대피자의 위치를 확인할 수 있는 시스템을 개발하였다. 선행연구를 통하여 시스템 개발에 필요한 요구사항을 네 가지 도출하였다. 요구사항에는 시스템이 작동하는데 필요한 전력이 크지 않아야 하며, 화재정보를 송·수신하기 위해서 필요한 거리 제한과 추가 장비, 그리고 중앙 서버가 없어도 시스템이 작동할 수 있어야 한다는 것이 포함된다. 이와 같은 요구사항을 기반으로, 본 연구에서는 건물 화재정보를 대피자의 모바일 기기로 전송할 수 있고, 대피자의 위치를 추적할 수 있는 서버 독립형 시스템을 개발하였다. 개발된 시스템은 화재정보를 전송하는 장치와 화재정보를 수신하고 대피자 위치를 추적할 수 있는 모바일 기기의 어플리케이션으로 구성된다. 화재에 의해서 중앙 서버가 손상되어도 대피자는 개발된 시스템을 사용하여 화재 위치와 규모, 출구의 위치와 대파자의 위치를 확인할 수 있으므로, 인명피해를 감소시키는데 기여할 수 있을 것이다. 또한, 실내위치추적에 사용되는 fingerprint 알고리듬의 사용성 향상을 위한 이론적 기초로도 활용될 수 있을 것이다. Fingerprint 사용을 위한 데이터베이스를 구축할 때에 소요되는 노력과 비용을 감소시키는 방법을 제안했기 때문이다.

IEEE 802.15.4기반 RSSI와 LQI를 이용한 실내 위치추정 기법 (An indoor localization approach using RSSI and LQI based on IEEE 802.15.4)

  • 김정하;김현준;김종수;이성근;서동환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권1호
    • /
    • pp.92-98
    • /
    • 2014
  • 최근 저비용 실내 측위 시스템을 구축하기 위하여 WLAN기반 RSSI를 이용한 핑거프린트 기법이 많이 연구되고 있다. 이 기법은 UWB의 측위와 비교해서 상대적으로 정확도가 떨어지므로 다양한 실내 위치기반 서비스를 구현하기 위하여 지속적으로 WLAN기반 핑거프린트의 측위 성능은 향상되어야 한다. 따라서 본 논문에서는 IEEE 802.15.4 표준에 포함된 RSSI와 LQI를 이용하여 실내 측위 성능을 향상 할 수 있는 핑거프린트 기법을 제안한다. 제안한 기법은 RSSI와 LQI를 활용함으로써 각 위치의 특징을 더욱 뚜렷하게 만들고 변형된 유클리드 거리법을 사용하여 핑거프린트 기법을 개선하였다. 다양한 장애물이 존재하는 NLOS의 실내 환경에서 실험을 진행한 결과 측위 성능이 22% 향상되는 것을 확인하였다.

가우시안의 차를 이용하여 검색속도를 향상한 최소 오디오 핑거프린팅 (Search speed improved minimum audio fingerprinting using the difference of Gaussian)

  • 권진만;고일주;장대식
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권12호
    • /
    • pp.75-87
    • /
    • 2009
  • 본 논문은 오디오 핑거프린트 데이터 생성 방법과 이를 이용한 오디오 데이터 비교 방법에 관한 것으로서, 오디오 데이터의 특징을 이용하여 음악을 식별하는 방법을 제시한다. 일반적으로 영상인식을 위해 많이 사용되는 가우시안의 차(Difference of Gaussian, DoG)를 오디오 데이터에 적용하여 음악이 급진적으로 변하는 부분을 추출하고, 해당 위치를 핑거프린트로 정의하는 방식이다. 이렇게 만들어진 핑거프린트는 음질의 변화에 민감하지 않으며, 음악 데이터의 일정 부분만으로도 원본과 동일 위치의 핑거프린트 추출이 가능하다. 이 시스템은 기존의 주파수 영역을 이용한 시스템 보다 오디오 핑거프린트의 데이터량과 계산량을 줄여줌으로써 검색을 할 때 보다 효율적인 성능을 나타낸다. 이를 응용하여 인터넷에 유통되는 복사된 음악의 저작권 보호, 또는 음악의 메타정보 등을 사용자에게 나타낼 수 있다.

반지도식 자기조직화지도를 이용한 wifi fingerprint 보정 방법 (Wifi Fingerprint Calibration Using Semi-Supervised Self Organizing Map)

  • 타이광퉁;정기숙;금창섭
    • 한국통신학회논문지
    • /
    • 제42권2호
    • /
    • pp.536-544
    • /
    • 2017
  • 무선 RSSI fingerprinting 방식은 기존 무선 인프라를 이용하면서 적정수준의 정확도를 얻을 수 있는 실내위치인식 방법 중의 하나이다. 하지만 라디오 맵 구성( fingerprint calibration) 과정에서 목표 환경의 다양한 위치에서 정확한 물리적 좌표와 무선 신호를 측정해야 하므로 시간과 노력이 많이 소요된다. 이 논문은 이러한 방식으로 위치 정보를 수집하지 않고 반지도식 자기조직화지도 학습 알고리즘을 사용하여 labeled RSSI를 얻고 RSSI 조합으로부터 맵을 구성하는 방법을 제안한다. 모의 데이터에 대한 실험을 통해 제안 방법이 fingerprint 데이터베이스로 부터 1%의 RSSI 샘플을 가지고 효과적인 전체 맵을 얻을 수 있다는 결론을 얻었다.

CNN-based Adaptive K for Improving Positioning Accuracy in W-kNN-based LTE Fingerprint Positioning

  • Kwon, Jae Uk;Chae, Myeong Seok;Cho, Seong Yun
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제11권3호
    • /
    • pp.217-227
    • /
    • 2022
  • In order to provide a location-based services regardless of indoor or outdoor space, it is important to provide position information of the terminal regardless of location. Among the wireless/mobile communication resources used for this purpose, Long Term Evolution (LTE) signal is a representative infrastructure that can overcome spatial limitations, but the positioning method based on the location of the base station has a disadvantage in that the accuracy is low. Therefore, a fingerprinting technique, which is a pattern recognition technology, has been widely used. The simplest yet widely applied algorithm among Fingerprint positioning technologies is k-Nearest Neighbors (kNN). However, in the kNN algorithm, it is difficult to find the optimal K value with the lowest positioning error for each location to be estimated, so it is generally fixed to an appropriate K value and used. Since the optimal K value cannot be applied to each estimated location, therefore, there is a problem in that the accuracy of the overall estimated location information is lowered. Considering this problem, this paper proposes a technique for adaptively varying the K value by using a Convolutional Neural Network (CNN) model among Artificial Neural Network (ANN) techniques. First, by using the signal information of the measured values obtained in the service area, an image is created according to the Physical Cell Identity (PCI) and Band combination, and an answer label for supervised learning is created. Then, the structure of the CNN is modeled to classify K values through the image information of the measurements. The performance of the proposed technique is verified based on actual data measured in the testbed. As a result, it can be seen that the proposed technique improves the positioning performance compared to using a fixed K value.

Indoor 3D Dynamic Reconstruction Fingerprint Matching Algorithm in 5G Ultra-Dense Network

  • Zhang, Yuexia;Jin, Jiacheng;Liu, Chong;Jia, Pengfei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권1호
    • /
    • pp.343-364
    • /
    • 2021
  • In the 5G era, the communication networks tend to be ultra-densified, which will improve the accuracy of indoor positioning and further improve the quality of positioning service. In this study, we propose an indoor three-dimensional (3D) dynamic reconstruction fingerprint matching algorithm (DSR-FP) in a 5G ultra-dense network. The first step of the algorithm is to construct a local fingerprint matrix having low-rank characteristics using partial fingerprint data, and then reconstruct the local matrix as a complete fingerprint library using the FPCA reconstruction algorithm. In the second step of the algorithm, a dynamic base station matching strategy is used to screen out the best quality service base stations and multiple sub-optimal service base stations. Then, the fingerprints of the other base station numbers are eliminated from the fingerprint database to simplify the fingerprint database. Finally, the 3D estimated coordinates of the point to be located are obtained through the K-nearest neighbor matching algorithm. The analysis of the simulation results demonstrates that the average relative error between the reconstructed fingerprint database by the DSR-FP algorithm and the original fingerprint database is 1.21%, indicating that the accuracy of the reconstruction fingerprint database is high, and the influence of the location error can be ignored. The positioning error of the DSR-FP algorithm is less than 0.31 m. Furthermore, at the same signal-to-noise ratio, the positioning error of the DSR-FP algorithm is lesser than that of the traditional fingerprint matching algorithm, while its positioning accuracy is higher.