• Title/Summary/Keyword: location estimation system

Search Result 457, Processing Time 0.028 seconds

A Study on Improvement of Location Accuracy and Indoor location estimation system to minimize installation costs (실내 위치 추정 시스템의 설치비용 최소화와 위치 정확도 개선에 대한 연구)

  • Yeom, Jin-Young;Kang, Dong-Jo;Park, Hyun-Ju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.5
    • /
    • pp.1083-1094
    • /
    • 2012
  • Commercialized location estimation System with high accuracy is widely used for various services. However, if the systems aren't completely installed in an indoor, location estimation accuracy tend to be very poor. In this paper, indoor location estimation algorithm to improve the accuracy of object location, by correcting the location information obtained from a system that does not fully install, is proposed. In this paper, UWB-based Ubisense system that provides high position accuracy in an indoor environment was utilized. In conclusion, this paper was able to improve the positioning accuracy, by correcting that information about the location of the measured object in position estimation system.

Development of Location Estimation and Navigation System of Mobile Robots Using USN and LEGO Mindstorms NXT (USN과 LEGO Mindstorms NXT를 이용한 이동로봇의 위치 인식과 주행 시스템 개발)

  • Park, Jong-Jin;Chun, Chang-Hi
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.3
    • /
    • pp.215-221
    • /
    • 2010
  • This paper introduces development of location estimation and navigation system of mobile robots using USN and LEGO Mindstorms NXT. Developed system includes location estimation, location and navigation information display and navigation control parts. It used ZigBee based USN which was built with CC2431 chip to locate blind node and implemented fuzzy model to improve ability of calculation of distances from reference nodes and location of mobile robots. This paper proposed combination method of location estimation using USN and encoder which is built in motors of mobile robots. Experimental results showed proposed method is superior to the method which used USN only in location estimation and navigating robots. Developed system can locate current position of mobile robots and monitor information from sensor nodes like temperature, humidity and send control signal to mobile robot to move.

Mobile Location Estimation for WCDMA System (WCDMA 시스템에서의 이동체 위치 추정 방안)

  • Lee, Jong-Chan;Lee, Moon-Ho
    • Journal of Information Technology Applications and Management
    • /
    • v.14 no.4
    • /
    • pp.1-16
    • /
    • 2007
  • In the microcell- or picocell-based system the frequent movements of the mobile bring about excessive traffics into the networks. A mobile location estimation mechanism can facilitate both efficient resource allocation and better QoS provisioning through handoff optimization. Existing location estimation schemes consider only LOS model and have poor performance in presence of multi-path and shadowing. In this paper we study a novel scheme which can increase estimation accuracy by considering NLOS environment and other multiple decision parameters than the received signal strength.

  • PDF

Estimation of Metabolic Rate Estimation for Location-based Human Adaptive Air-conditioner in Smart Home (스마트 홈에서 위치 기반 인간 적응형 냉난방기를 위한 신체 활동량 추정)

  • Kim, Hyun-Hee;Lee, Suk;Lee, Kyung-Chang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.1
    • /
    • pp.83-89
    • /
    • 2010
  • If an appliance perceives the location or health condition of a resident in the smart home, it can provide more intelligent service actively. That is, while the conventional appliance is operated by manual input of a resident, the location-based human adaptive appliance detects the resident's information such as location, activity pattern, or health condition by itself and provides the most suitable living condition for the resident autonomously. This paper presents the real-time location-based metabolic rate estimation method that measures the amount of physical activity (metabolic rate) for location-based human adaptive air-conditioner. And, the feasibility of the algorithm is evaluated experimentally on a test bed using the pyroelectric infrared sensor-based indoor location aware system (PILAS) that is a non-terminal-based location-aware system.

Performance Evaluation of Location Estimation System Using a Non Fixed Single Receiver

  • Myagmar, Enkhzaya;Kwon, Soon-Ryang
    • International Journal of Contents
    • /
    • v.10 no.4
    • /
    • pp.69-74
    • /
    • 2014
  • General location aware systems are only applied to indoor and outdoor environments using more than three transmitters to estimate a fixed object location. Those kinds of systems have environmental restrictions that require an already established infrastructure. To solve this problem, an Object Location Estimation (OLE) algorithm based on PTP (Point To Point) communication has been proposed. However, the problem with this method is that deduction of performance parameters is not enough and location estimation is very difficult because of unknown restriction conditions. From experimental tests in this research, we determined that the performance parameters for restriction conditions are a maximum transmission distance of CSS communication and an optimum moving distance interval between personal locations. In this paper, a system applied OLE algorithm based on PTP communication is implemented using a CSS (Chirp Spread Spectrum) communication module. A maximum transmission distance for CSS communication and an optimum moving distance interval between personal locations are then deducted and studied to estimate a fixed object location for generalization.

A Method of Speed-Adaptive Location Estimation Based on Hybrid(TDOA-RSSI) and Least Square Method in RTLS System (RTLS 시스템에서 Hybrid(TDOA-RSSI)와 최소자승법을 기반으로 한 속도적응형 위치추적방법)

  • Lee, Jung Woo;Ha, Deock-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.737-740
    • /
    • 2009
  • In this paper, in order to improve the location estimation error existing in RTLS(Real Time Location Service) system for the mobility individual, we proposed a method of speed-adaptive location estimation that the transmitting signaling period is adaptively changed according to the changing speed of a mobility individual for each location interval. To get the more accurate location estimation values, we analyzed both the location values measured by Hybrid(TDOA and RSSI) method by using AeroScout TM RTLS system and the estimated value obtained from the theoretical calculation by using the Least Squares Method. Finally, we compared the analyzed values with a real location of mobility individual. From the experimental results based on our proposed method, it can be seen that the location estimation error for the real location of a mobility individual can be improved.

  • PDF

Real-time Location Tracking System Using Ultrasonic Wireless Sensor Nodes (초음파 무선 센서노드를 이용한 실시간 위치 추적 시스템)

  • Park, Jong-Hyun;Choo, Young-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.711-717
    • /
    • 2007
  • Location information will become increasingly important for future Pervasive Computing applications. Location tracking system of a moving device can be classified into two types of architectures: an active mobile architecture and a passive mobile architecture. In the former, a mobile device actively transmits signals for estimating distances to listeners. In the latter, a mobile device listens signals from beacons passively. Although the passive architecture such as Cricket location system is inexpensive, easy to set up, and safe, it is less precise than the active one. In this paper, we present a passive location system using Cricket Mote sensors which use RF and ultrasonic signals to estimate distances. In order to improve accuracy of the passive system, the transmission speed of ultrasound was compensated according to air temperature at the moment. Upper and lower bounds of a distance estimation were set up through measuring minimum and maximum distances that ultrasonic signal can reach to. Distance estimations beyond the upper and the lower bounds were filtered off as errors in our scheme. With collecting distance estimation data at various locations and comparing each distance estimation with real distance respectively, we proposed an equation to compensate the deviation at each point. Equations for proposed algorithm were derived to calculate relative coordinates of a moving device. At indoor and outdoor tests, average location error and average location tracking period were 3.5 cm and 0.5 second, respectively, which outperformed Cricket location system of MIT.

A Study on the Location Correction Algorithm considering effects of obstacles on location estimation system (장애물이 위치 추정 시스템에 미치는 영향을 고려한 위치 보정 알고리즘에 관한 연구)

  • Kang, Dong-Jo;Lee, Jeong-Joo;Park, Hyun-Ju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.7
    • /
    • pp.1524-1532
    • /
    • 2012
  • The calibration method using the existing environmental characteristics is to correct taking advantage of the data that is followed Judgement on the environment. If a decision is not made on the environmental judgement, the use of traditional methods may increase rather than errors. In this paper, UWB-based localization system is utilized. We propose Location Correction Algorithm which is available on if you can not make a judgment about any circumstances for location estimation system. Reference Points was selected to observe the characteristics of the localization system. This paper searched the characteristics of the localization system in LOS environment and NLOS environment, and used data correcting the location information of the moving object by combining the two environmental characteristics. The Location Correction Algorithm is applied to the location measured from the location estimation system. This algorithm corrects for the location information of the object. As a result, the location accuracy improvement were observed.

Intelligent mobile Robot with RSSI based Indoor Location Estimation function (RSSI기반 위치인식기능 지능형 실내 자율 이동로봇)

  • Yoon, Ba-Da;Shin, Jae-Wook;Kim, Seong-Gil;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.449-452
    • /
    • 2007
  • An intelligent robot with RSSI based indoor location estimation function was designed and implemented. A wireless sensor node was attached to the robot to received the location data from the indoor location estimation function. Spartan III was used as the main control device in the mobile robot. The current location data collected from the indoor location estimation system was transferred to the mobile robot and server through Zigbee/IEEE 802.15.4 wireless communication of the sensor node. Once the location data is received, the sensor node senses the direction of the robot head and directs the robot to move to its destination. Indoor location estimation intelligent robot is able to move efficiently and actively to the user appointed location by implementing the proposed obstacles avoidance algorithm. This system is able to monitor real-time environmental data and location of the robot using PC program. Indoor location estimation intelligent robot also can be controlled by executing the instructions sent from the PC program.

  • PDF

Location Estimation Method of Wireless Nurse Call System using the SOFM (SOFM을 이용한 Wireless Nurse Call System의 위치추정방식)

  • Choi, Jeong Yeon;Jung, Kyung Kwon;Hyun, Kyo Hwan;Park, Sun Ho;Park, Min Sup;Eom, Ki Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.326-329
    • /
    • 2009
  • When a patient did emergency call, only the name of the patient and a hospital room are shown to nurse's terminal. So, it's so difficult that a nurse looks for the location of the patient. Therefore we have much time about search patient when a patient does emergency call at the other places of their hospital room. This paper proposed optimal repeater's location using SOFM and patient's location estimation using repeater's location information and RSSI database. We performed simulations on searching patient's location using location estimation algorithm.

  • PDF