• Title/Summary/Keyword: location control

Search Result 2,392, Processing Time 0.032 seconds

Cable with discrete negative stiffness device and viscous damper: passive realization and general characteristics

  • Chen, Lin;Sun, Limin;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.627-643
    • /
    • 2015
  • Negative stiffness, previously emulated by active or semi-active control for cable vibration mitigation, is realized passively using a self-contained highly compressed spring, the negative stiffness device (NSD).The NSD installed in parallel with a viscous damper (VD) in the vicinity of cable anchorage, enables increment of damper deformation during cable vibrations and hence increases the attainable cable damping. Considering the small cable displacement at the damper location, even with the weakening device, the force provided by the NSD-VD assembly is approximately linear. Complex frequency analysis has thus been conducted to evaluate the damping effect of the assembly on the cable; the displacement-dependent negative stiffness is further accounted by numerical analysis, validating the accuracy of the linear approximation for practical ranges of cable and NSD configurations. The NSD is confirmed to be a practical and cost-effective solution to improve the modal damping of a cable provided by an external damper, especially for super-long cables where the damper location is particularly limited. Moreover, mathematically, a linear negative stiffness and viscous damping assembly has proven capability to represent active or semi-active control for simplified cable vibration analysis as reported in the literature, while in these studies only the assembly located near cable anchorage has been addressed. It is of considerable interest to understand the general characteristics of a cable with the assembly relieving the location restriction, since it is quite practical to have an active controller installed at arbitrary location along the cable span such as by hanging an active tuned mass damper. In this paper the cable frequency variations and damping evolutions with respect to the arbitrary assembly location are then evaluated and compared to those of a taut cable with a viscous damper at arbitrary location, and novel frequency shifts are observed. The characterized complex frequencies presented in this paper can be used for preliminary damping effect evaluation of an adaptive passive or semi-active or active device for cable vibration control.

Design of Dynamic Location Privacy Protection Scheme Based an CS-RBAC (CS-RBAC 기반의 동적 Location Privacy 보호 구조 설계)

  • Song You-Jin;Han Seoung-Hyun;Lee Dong-Hyeok
    • The KIPS Transactions:PartC
    • /
    • v.13C no.4 s.107
    • /
    • pp.415-426
    • /
    • 2006
  • The essential characteristic of ubiquitous is context-awareness, and that means ubiquitous computing can automatically process the data that change according to space and time, without users' intervention. However, in circumstance of context awareness, since location information is able to be collected without users' clear approval, users cannot control their location information completely. These problems can cause privacy issue when users access their location information. Therefore, it is important to construct the location information system, which decides to release the information considering privacy under the condition such as location, users' situation, and people who demand information. Therefore, in order to intercept an outflow information and provide securely location-based information, this paper suggests a new system based CS-RBAC with the existing LBS, which responds sensitively as customer's situation. Moreover, it accommodates a merit of PCP reflecting user's preference constructively. Also, through privacy weight, it makes information not only decide to providing information, but endow 'grade'. By this method, users' data can be protected safely with foundation of 'Role' in context-aware circumstance.

Optimal Active Seismic Control of Structures with Optimum Location of Active Controllers (제어기의 최적위치선정을 고려한 구조물의 최적 능동지진제어)

  • Cho, Chang-Geun;Kwon, Joon-Myoung;Park, Tae-Hoon;Park, Moon-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.179-189
    • /
    • 2008
  • The object of this study is to develope a program with proposed numerical techniques for an optimal seismic control of structures using active tendon systems. Ricatti closed-loop algorithm has been applied to control the active tendon systems with time-delay problem. The optimal control is formulated as an optimization problem which is finding optimal weighting matrices by minimizing the quadratic performance index by SUMT. In order to find the optimal location of active tendons in structures, controllability index has been introduced. From numerical examples, the current optimal control technique with optimal location of tendons was suitable to control the seismic response of structures.

Design of Vehicle Location Tracking System using Mobile Interface (모바일 인터페이스를 이용한 차량 위치 추적 시스템 설계)

  • Oh, Jun-Seok;Ahn, Yoon-Ae;Jang, Seung-Youn;Lee, Bong-Gyou;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.9D no.6
    • /
    • pp.1071-1082
    • /
    • 2002
  • Recent development in wireless computing and GPS technology cause the active development in the application system of location information in real-time environment such as transportation vehicle management, air traffic control and location based system. Especially, study about vehicle location tracking system, which monitors the vehicle's position in a control center, is appeared to be a representative application system. However, the current vehicle location tracking system can not provide vehicle position information that is not stored in a database at a specific time to users. We designed a vehicle location tracking system that could track vehicle location using mobile interface such as PDA. The proposed system consist of a vehicle location retrieving server and a mobile interface. It is provide not only the moving vehicle's current location but also the position at a past and future time which is not stored in database for users.

SELECTION PROCEDURES TO SELECT POPULATIONS BETTER THAN A CONTROL

  • Kumar, Narinder;Khamnel, H.J.
    • Journal of the Korean Statistical Society
    • /
    • v.32 no.2
    • /
    • pp.151-162
    • /
    • 2003
  • In this paper, we propose two selection procedures for selecting populations better than a control population. The bestness is defined in terms of location parameter. One of the procedures is based on two-sample linear rank statistics whereas the other one is based on a comparatively simple statistic, and is useful when testing time is expensive so that an early termination of an experiment is desirable. The proposed selection procedures are seen to be strongly monotone. Performance of the proposed procedures is assessed through simulation study.

Indoor Localization based on Multiple Neural Networks (다중 인공신경망 기반의 실내 위치 추정 기법)

  • Sohn, Insoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.4
    • /
    • pp.378-384
    • /
    • 2015
  • Indoor localization is becoming one of the most important technologies for smart mobile applications with different requirements from conventional outdoor location estimation algorithms. Fingerprinting location estimation techniques based on neural networks have gained increasing attention from academia due to their good generalization properties. In this paper, we propose a novel location estimation algorithm based on an ensemble of multiple neural networks. The neural network ensemble has drawn much attention in various areas where one neural network fails to resolve and classify the given data due to its' inaccuracy, incompleteness, and ambiguity. To the best of our knowledge, this work is the first to enhance the location estimation accuracy in indoor wireless environments based on a neural network ensemble using fingerprinting training data. To evaluate the effectiveness of our proposed location estimation method, we conduct the numerical experiments using the TGn channel model that was developed by the 802.11n task group for evaluating high capacity WLAN technologies in indoor environments with multiple transmit and multiple receive antennas. The numerical results show that the proposed method based on the NNE technique outperforms the conventional methods and achieves very accurate estimation results even in environments with a low number of APs.

Development of Position Recognition System by Wireless Communication (무선통신을 이용한 위치인식 시스템 개발)

  • Sohn, Jong-Hoon;Hwang, Gi-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.6
    • /
    • pp.1477-1486
    • /
    • 2013
  • In this paper, Implementation of location estimation system using wireless communication technology based on Zigbee. Using wireless communication technology, calculation more accurate location information and service location information to the H/W and S/W has been developed. Receivers, repeaters, smart tag(location device), was developed for implement a location estimation system. The smart tag is built the 120~130KHz, 13~14MHz, 2.0~3.0GHz radio frequency tag. Receiver and repeater is applied to the tag module to recognize the location device's active RFID tags transmit a wireless signal for tag identification. Common Entrance control system in contact with a smart tag, It was implemented to transfer the value of the tag to the access control server over a LAN.

Design of the Robust CV Control Chart using Location Parameter (위치모수를 이용한 로버스트 CV 관리도의 설계)

  • Chun, Dong-Jin;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.116-122
    • /
    • 2016
  • Recently, the production cycle in manufacturing process has been getting shorter and different types of product have been produced in the same process line. In this case, the control chart using coefficient of variation would be applicable to the process. The theory that random variables are located in the three times distance of the deviation from mean value is applicable to the control chart that monitor the process in the manufacturing line, when the data of process are changed by the type of normal distribution. It is possible to apply to the control chart of coefficient of variation too. ${\bar{x}}$, s estimates that taken in the coefficient of variation have just used all of the data, but the upper control limit, center line and lower control limit have been settled by the effect of abnormal values, so this control chart could be in trouble of detection ability of the assignable value. The purpose of this study was to present the robust control chart than coefficient of variation control chart in the normal process. To perform this research, the location parameter, ${\bar{x_{\alpha}}}$, $s_{\alpha}$ were used. The robust control chart was named Tim-CV control chart. The result of simulation were summarized as follows; First, P values, the probability to get away from control limit, in Trim-CV control chart were larger than CV control chart in the normal process. Second, ARL values, average run length, in Trim-CV control chart were smaller than CV control chart in the normal process. Particularly, the difference of performance of two control charts was so sure when the change of the process was getting to bigger. Therefore, the Trim-CV control chart proposed in this paper would be more efficient tool than CV control chart in small quantity batch production.

A Study on Visual Feedback Control of a Dual Arm Robot with Eight Joints

  • Lee, Woo-Song;Kim, Hong-Rae;Kim, Young-Tae;Jung, Dong-Yean;Han, Sung-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.610-615
    • /
    • 2005
  • Visual servoing is the fusion of results from many elemental areas including high-speed image processing, kinematics, dynamics, control theory, and real-time computing. It has much in common with research into active vision and structure from motion, but is quite different from the often described use of vision in hierarchical task-level robot control systems. We present a new approach to visual feedback control using image-based visual servoing with the stereo vision in this paper. In order to control the position and orientation of a robot with respect to an object, a new technique is proposed using a binocular stereo vision. The stereo vision enables us to calculate an exact image Jacobian not only at around a desired location but also at the other locations. The suggested technique can guide a robot manipulator to the desired location without giving such priori knowledge as the relative distance to the desired location or the model of an object even if the initial positioning error is large. This paper describes a model of stereo vision and how to generate feedback commands. The performance of the proposed visual servoing system is illustrated by the simulation and experimental results and compared with the case of conventional method for dual-arm robot made in Samsung Electronics Co., Ltd.

  • PDF