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SELECTION PROCEDURES TO SELECT POPULATIONS
BETTER THAN A CONTROL

NARINDER KUMAR! AND H. J. KHAMNEI?

ABSTRACT

In this paper, we propose two selection procedures for selecting popu-
lations better than a control population. The bestness is defined in terms
of location parameter. One of the procedures is based on two-sample linear
rank statistics whereas the other one is based on a comparatively simple
statistic, and is useful when testing time is expensive so that an early ter-
mination of an experiment is desirable. The proposed selection procedures
are seen to be strongly monotone. Performance of the proposed procedures
is assessed through simulation study.
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1. INTRODUCTION

Let mg,m1,..., 7 be (k + 1), k& > 2 independent populations. The popula-
tion my is assumed to be control population and populations 7y,...,n; are the
treatment populations. In this paper, we define bestness in terms of location pa-
rameters and the problem of selecting all populations better than the control is
considered in two cases. In the first case (Case 1), assume that the population m;
has the absolutely continuous distribution function F;(z) = F(x —6;), where 6; is
the location parameter, ¢ =0,1,...,%k and F(-) is an (unknown) absolutely con-
tinuous distribution function. The treatment population 7 is said to be better
than the control population my if 6; > 6y, ¢ = 0,1,...,k. The goal is to select a
subset of the k treatment populations, which contains all the populations better
than the control. Any such selection is called a correct selection (CS). In the
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second case (Case 2) the underlying assumption is that the (k + 1) populations
differ in their location parameters and have F(0) = p, so that 6;, the location
parameter of the i** population, is its p** quantile, i = 0,1,... k.

Practical applications of the above formulation are encountered in agriculture,
business concerns, etc. In agriculture, usually the aim of the experimenter is to
select or recommend those varieties that has more average yield in comparison to a
control variety. Similarly a business concern, using different advertising methods
to enhance the sales, selects/prefers the advertising methods which produce the
more average sales in comparison to the control case.

Rizvi et al. (1968) proposed non-parametric ranking procedures for compar-
ison of treatment populations with a control in terms of a-quantiles. Deshpande
and Mehta (1983) proposed procedures while comparing populations in terms of
distribution functions. Gill and Mehta (1993) developed selection procedures for
selecting population better than a control population while restricting to only
scale parameters. Lehmann (1963), Puri and Puri (1968, 1969), Bartlett and
Govindarajulu (1968) developed selection procedures based on joint ranking of
sample observations from all the populations. However, Rizvi and Woodworth
(1970) provided counter examples that the procedures based on joint ranking do
not control the probability of correct selection over both the slippage parametric
configuration (used under indifference zone) as well as the entire parametric space
(used under subset selection approach). Hsu (1980, 1981) used pairwise ranking
to propose subset selection procedures and has shown that these procedures con-
trol the probability of correct selection (PCS) over the entire parametric space.
In a different approach, Lann (1991a, 1991b, 1992) considered subset selection
procedures for an almost best population for location probability .model. Here
the goal was to select a subset containing at least one A-best population with
confidence P*. A treatment was called A-best if it is at a distance less than or
equal to A (A > 0) from the best population, whereas the best population was
to be associated with the largest location parameter.

In this paper, we have used two-sample statistics for proposing subset selection
procedures. These procedures control the PCS over the entire parametric space.
Let Q = {Q 10 =(00,01,...,0p) —00 < 0; < oo} be the parametric space. The
subset selection procedures for Case 1 and Case 2 are proposed in Section 2.
These procedures are required to satisfy the P*-condition Py(CS) > P* for any
0 € Q, where 27F < P* < 1.

The proposed selection procedures are shown to be strongly monotone in
Section 3. In Section 4 approximate implementation of the proposed procedures,
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with the help of existing tables, is discussed. Simulation study is made in Section
5 in order to see the relative performance of the proposed procedures.

2. PROPOSED SELECTION PROCEDURES

Case 1. Here the populations mg, 71,..., 7, are assumed to differ only in their
location parameters. The selection procedures proposed in this case are based on
two-sample linear rank statistics. Let X;,,a = 1,...,n; be a random sample of n;
observations from 7;, ¢+ =0,1,...,k and let X = (Xo1,..., Xong, X11,- - X1n;>

» Xk1s. -y Xkn, ) be the vector of all the observations.

Let R(()O)t denote the rank of X, in the combined sample X;1, ..., Xin;, Xo1,. .-,
Xono- Define SO = (1/ng+1/n;) { S0 (am(R 00)[) —noam)}, where m = ng +n;
and a,, () are some given scores satisfying the following two assumptions:

(A1) For any positive integer m, the scores an,(1),...,a,(m) are generated by
a non-decreasing, non-constant, and square integrable function J(u) (0 <
v < 1) in either of the following two ways: am(B8) = J(B/(m + 1)) or
am(B8) = E{J( ,(nﬁ))}, where f = 1,...,m and Uiy <o < U™ denote
the order statistic based on a sample of size m from the uniform distribution
on the interval (0,1). Define @y, = {am(1) + -+ + am(m)}/m.

(A2) J(u) (0 < u < 1), which is called as 1imiting score function, is such that
Zﬁ 1(am(ﬁ) — @)% /(m — 1) = o2 fo (J(u) — J)?du < 0o, where J =

I
The proposed selection procedure based on the statistic S(()i) is as follows.

R; : For any z"(l < i < k) include the population #; in the subset if and only if
S < ¢89(n, P*), where n. = (ng, ny, . .., no)* and the constant c{?(n, P*)
are chosen so that for a pre-assigned probability P*(27% < P* < 1),

P {Sé“ < CW(n, P, i = 1,...,k} > P*,

Here P, indicates that the probability is computed under the parametric
configuration 8y = 6; = --- = 6.

Now we shall show that the procedure R; satisfies P*-condition when the
scores satisfy the (A1).

THEOREM 2.1. Under (A1), procedure Ry satisfies P*-condition.
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PROOF. Assume without loss of generality that population 7; is better than
the control population 7g. Since the scores satisfy (Al), maxi<i<k S(()i) is non-
decreasing in Xjy, ..., Xon, and non-increasing in other components of X. Hence,
by Lemma 4.1 of Mahamunulu (1967), we have for any § € ,

P < R {8{ <Cfn, P), i=1,... K}

< By(CS | Ry).

This proves the theorem. O

Case 2. Here once again the (k+1) populations differ in their location parameters
and it is further assumed that F(0).= p, so that 6;, the location parameter of
the #** population, is its pt* quantile. For practical situations of this type, one
may refer to interesting paper by Chakraborti and Desu (1989). In this case, the
selection procedure is based on the following statistics. Let Uéi) be the number
of observations in the 5** (1 <4 < k) sample not exceeding @, where is s** order
statistic in the sample from control population. Here s = [nop] + 1, where [z] is
the largest integer not exceeding . Now

EWU) = niFi(60), i=1,... .,k

When 6; = 6 for any i, E(US" /n;) = F(0) =p, i =1,...,k.
Let Wo(l) = (Uéz)/ni) —p, i = 1,...,k. In this case the proposed selection
procedure is based on statistic Woz) and is as follows.

Ry : For any i (1 <4 < k), include 7; in the subset if and only if Wéi) <
dg”)(g, P*). Here n = (ng,n1,...,nx)", and the constant dél)(g, P*) are
chosen such that for a pre-assigned probability P*(27* < P* < 1), we have

P <P (W <, P), i=1,... .k}

and again P indicates that the probability is computed under 6y = 6; =
coe = B

On the lines of arguments used in Theorem 2.1, the procedure R, satisfies P*-
condition.

REMARK 2.1. Procedure R, is useful when testing time is expensive so that
early termination of an experiment is desirable. The justification for this as under:
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To apply procedure R;, experimenter needs to observe the response variable on
all the n; + --- + ng experimental units. This process of collecting the data
often requires a considerable amount of time and resources. Generally, in life-
testing experiments and drug-screening studies observations become available in
an ordered fashion and it is desirable to terminate the experiment as soon as a
pre-chosen quantile is observed in any of the k-samples. Procedure Rj is for such
experiments, which enables one to reach a decision as to include a population
in the subset or not. Evidently, procedure Ry could lead to substantial savings
in time and resources if k¥ and/or ny + --- + ny is large. For details refer to
Chakraborti and Desu (1989).

In the following section we define the strong monotonicity of a selection pro-
cedure and then establish this property for procedures R; and Rs.

3. STRONG MONOTONICITY OF PROCEDURES R; AND Ry

Gupta and Nagel (1971), and Santner (1975) have defined unbiasedness,
monotonicity, and strong monotonicity properties of a selection procedure while
proposing selection procedures for parametric families of probability distribu-
tions. Now below we define the strong monotonicity properties of a selection
procedure R when the parameters of interest are location parameters. For any
0 € Q, let Py(i) = Py{m; is included in the subset|R}, 1 =1,... k.

I

DEFINITION 3.1. The selection procedure R is strongly monotone in m; iff
Py(i) is increasing in 0; when all other components of § are fized, and Py(i) is
decreasing in 0, (j # i) when all other components of 8 are fized.

The following theorem shows strong monotonicity of selection procedure R;.

THEOREM 3.1. The selection procedure Ry is strongly monotone.

PROOF. Define the indicator function I(-) as

0, otherwise.

. e oli) (2) *
I(S(()")):{la lfS() SCO (ﬁaP )a

Then by using above Theorem 2.1 and Lemma 4.1 of Mahamunula (1967), we
have

Py(i) = Bp{I1(S{")} < B3 {I(S{)} = Py (i)
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where 8 = (60,61,...,6;,...,0;) and 6" = (6g,6:1,...,67,...,60k) with 6; < 6.
This proves the theorem. O

As strong monotonicity implies monotonicity which in turn implies unbiased-
ness (see Santner, 1975), we have the following corollary.

COROLLARY 3.1. The selection procedure Ry is monotone and unbiased.

On the lines of Theorem 3.1 we can easily show that the selection procedure
R, is strongly monotone and hence monotone and unbiased. In the next section,
we see that with the help of existing tables selection procedures R; and R, can
be approximately implemented.

4. APPROXIMATE IMPLEMENTATION OF PROCEDURES R; AND R,

Here, we first establish the asymptotic normality of vectors S = (Sél), ey

S(gk))t and W = (Wo(l), cey ék))t. The asymptotic normality of vector S under
the configuration 8y = 6, = --- = 0, follows immediately from a result of Koziol

and Reid (1977) and is stated below in Lemma 4.1.

LEMMA 4.1. Under 6y =0, = --- = 0 and as min(ng,ny,...,ng) = 00 such
that ni/N — X, 0 < X\ <1, fori=0,1,...,k, the random vector (N/U%V)l/zﬁ
is asymptotically normally distributed with mean vector O and dispersion matriz

as
00 ]'/AOa for 4 75.77

where o3, = Zgzl(alv(ﬁ) —an)?/(N-1) — fol (J(u) — J)%du and N = ng+ny +
cee .

N o . for i=j,
TE(S()S(J)) _ L/ hg+ 1/, for i=3j
Y

Now let ny = ny = .-+ = ny = n (say) and as n(ng) — oo, n/N(ng/N) —
A1(ho), where N = ng + nk. Let Zo(i) be (1/Xo + 1/A)"Y2(N/o2) /28, 1t
follows from Lemma 4.1, that the limiting distribution of the random vector Z =
(Z(gl), e ,Zék))t under 8y = 8; = --- = 0 is asymptotically multivariate normal
of equally correlated normal variables. The limiting value of this correlation
coefficient is 7 = (1/X0)/(1/Ao + 1/A1). The constant C(gi) (n, P*) of the selection
procedure R;, when ny = ny = --- = ny is determined such that

P* =P0{Z(§“ <z, i:l,...,k}

- PO{ 1@?& Z((’i) = Z}’
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where z = (1/Xo + 1/)\1)_I/Q(N/olzv)l/QCéi)(@, P*), i=1,...,k.

Now we can make use of Table-I of Gupta et al. (1973) (reading N as k, o as
1 — P* and p as (1/X0)/(1/Xo + 1/A1) in that table) to read the constant z and
thereby get the value of constant Céi) (n,P*), i = 1,...,k. Although extensive
knowledge of the asymptotic properties of the sample quantiles exist, the asymp-
totic distribution of W = (Wél), ceey ék))t follows from a well known result (e.g.

David, 1981, p.255) and is stated below in Lemma, 4.2.

LEMMA 4.2. The asymptotic distribution of NY/2(W —E(W)) as min(ng, ny,
.., Ng) = 00 such that ng /N — X, 0< \; <1, fori=0,1,...,k, is normal with
mean vector 0 and dispersion matriz >, = ((0y;)), where N =ng+mny + -+ +ng
and

oy = { Q7po/ o + pifXi, for i=j,
QiQ;po/ o, for i # j,

where po = p(1 —p), pi = Fi(60)(1 — Fi(fo)), Qi = fi(6:)/fo(6o), ¢ = 1,...,k,
and we assume that F, (6) = f;(60) ezists and is positive for i = 0,1,... k.

Under g = 61 = --- = 6, it is easy to see that E(W) =0 and
- po/ Ao + po/Ai, for i =7,
N po/ Ao, for i # j.

Consequently, we have the following theorem.

THEOREM 4.1. Under 6y = 6, = --- = 0 and as min(ng,ny,...,ng) — 0o
such that ni/N — X;, 0 < \; < 1, for i = 0,1,...,k, the random wvector
(N/po)l/QE 15 asymptotically normally distributed with mean vector and dis-
persion matriz as

N ()

N g (w Wéj)) _ { 1/Ae +1/X;, for i=7j,

Do 1/ 2o, for @ # j.

Using Theorem 4.1, the selection procedure Ry can also be implemented with
the help of Gupta et al. (1973) tables as explained above for procedure R;. In
the following section, we carry out simulation study in order to see the relative
performance of procedures R; and Ra.



158 NARINDER KUMAR AND H. J. KHAMNE!

5. SIMULATION STUDY

In this section, we present the results of our simulation study carried out to
assess the relative performance of procedures R; and R,. Simulation is carried
out in the following steps.

(i) Three sets of parametric families namely Normal, Double Exponential,
and Cauchy are considered.

(ii) Four populations say mg, 71, 72 and 73 with particular parametric con-
figurations from each family are taken. The following two sets of configurations
are considered:

Set-1: 1. Normal distribution
w0~ N(2,1), m ~ N(2.8,1), my ~ N(0.5,1), m3 ~ N(2.1,1);

2. Double Exponential distribution
mo ~ DE(2,1), m ~ DE(2.8,1), my ~ DE(0.5,1), m3 ~ DE(2.1,1);

3. Cauchy distribution
T ~ 0(2, 1), M~ 0(2.8, 1), Ty ~ 0(05, 1), 3 ~ 0(2.1, 1).

Set-11 : 1. Normal distribution
mo ~ N(1.8,1), m ~ N(0.5,1), mp ~ N(1.5,1), m3 ~ N(2.1,1);

2. Double Exponential distribution
T ~ 0(1.8, 1), T~ 0(0.5, 1), Ty ~ 0(1.5, 1), Ty ~ 0(2.1, 1) )

3. Cauchy distribution
mo ~ C(2,1), m ~C(2.8,1), mg ~ C(0.5,1), w3 ~ C(2.1,1).

In the Set-I and Set-II, notation DE(u,A) denotes the Double Exponential dis-
tribution with location parameter p and scale parameter A and notation C'(u, )
denotes the Cauchy distribution with location parameter y and scale parameter
A

(iii) In procedure R; we restrict to the situation when the underlying scores
are Wilcoxon scores, i.e. J(u) = u, 0 < u < 1. For procedure Ry we assume
that, the location parameter of the i** population (i = 0,1,2,3) is the median,
i.e. p=1/2.

(iv) Random samples of size ng and common sample size n (n = 6, 10, 15, 20, 30.
40) are generated through computer from control population and the three pop-
ulations, respectively in a set and size of the selected subset along with the
probability of correct selection is noted by taking P* = 0.95,0.90 and 0.75 for
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both procedures R; and R,. This process is repeated 10,000 times. Note that
np and n may be chosen to take different values.

(v) The estimated expected subset size (F(S)) and estimated probabilities of
correct selection for the above mentioned values of ng and n are obtained for both
procedures by taking the average of the subset sizes and probabilities of correct
selection in 10,000 repetitions, respectively.

(vi) As a measure of “goodness” of a subset selection procedure, we use the
ratio of the estimated expected subset size E(S) to the estimated probability of
correct selection, i.e. E(S)/P((TS) A rule R is said to be “better” than a rule
R* if the ratio for R is less than the ratio of R*. The relative efficiency of the
procedure R relative to the procedure Rs is an inverse ratio of the measures of
goodness, i.e. e(Ry, Ry) = {E(S|R2)/E(S|R1)} x {E(CS|R;)/E(CS|R2)}. The
computed values of e(R1, Ry) for different parametric configurations of families
of distributions, as in Set-I and Set-1I, and for above mentioned choices of ng, n
and P* are represented in Figures 1 and 2.
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