• 제목/요약/키워드: localized states

검색결과 80건 처리시간 0.034초

Strong Correlation Effect by the Rare Earth Substitution on Thermoelectric Material Bi2Te3 ; in GGA+U Approach

  • Quang, Tran Van;Kim, Miyoung
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2013년도 임시총회 및 하계학술연구발표회
    • /
    • pp.19-20
    • /
    • 2013
  • Thermoelectic properties of the typical thermoelectric host materials, the tellurides and selenides, are known to be noticeably changed by their volume change due to the strain [1]. In the bismuth telluride ($Bi_2Te_3$) crystal, a substitution of rare-earth element by replacing one of the Bi atoms may cause the change of the lattice parameters while remaining the rhombohedral structure of the host material. Using the first-principles approach by the precise full potential linearized augmented plane wave (FLAPW) method [2], we investigated the Ce substitution effect on the thermoelectric transport coefficients for the bismuth telluride, employing Boltzmann's equation in a constant relaxation-time approach fed with the FLAPW wave-functions within the rigid band approximation. Depending on the real process of re-arrangement of atoms in the cell to reach the equilibrium state, $CeBiTe_3$ was found to manifest a metal or a narrow bandgap semiconductor. This feature along with the strong correlation effect originated by the 4f states of Ce affect significantly on the thermoelectric properties. We showed that the position of the strongly localized f-states in energy scale (Fig. 1, f-states are shaded) was found to alter critically the transport properties in this material suggesting an opportunity to improve the thermoelectric efficiency by tuning the external strain which may changing the location of the f-sates.

  • PDF

High Performance p-type SnO thin-film Transistor with SiOx Gate Insulator Deposited by Low-Temperature PECVD Method

  • U, Myeonghun;Han, Young-Joon;Song, Sang-Hun;Cho, In-Tak;Lee, Jong-Ho;Kwon, Hyuck-In
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권5호
    • /
    • pp.666-672
    • /
    • 2014
  • We have investigated the gate insulator effects on the electrical performance of p-type tin monoxide (SnO) thin-film transistors (TFTs). Various SnO TFTs are fabricated with different gate insulators of a thermal $SiO_2$, a plasma-enhanced chemical vapor deposition (PECVD) $SiO_x$, a $150^{\circ}C$-deposited PEVCD $SiO_x$, and a $300^{\circ}C$-deposited PECVD $SiO_x$. Among the devices, the one with the $150^{\circ}C$-deposited PEVCD $SiO_x$ exhibits the best electrical performance including a high field-effect mobility ($=4.86cm^2/Vs$), a small subthreshold swing (=0.7 V/decade), and a turn-on voltage around 0 (V). Based on the X-ray diffraction data and the localized-trap-states model, the reduced carrier concentration and the increased carrier mobility due to the small grain size of the SnO thin-film are considered as possible mechanisms, resulting in its high electrical performance.

First-principles Study of Graphene/Hexagonal Boron Nitride Stacked Layer with Intercalated Atoms

  • Sung, Dongchul;Kim, Gunn;Hong, Suklyun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.185.2-185.2
    • /
    • 2014
  • We have studied the atomic and electronic structure of graphene nanoribbons (GNRs) on a hexagonal boron nitride (h-BN) sheet with intercalated atoms using first-principles calculations. The h-BN sheet is an insulator with the band gap about 6 eV and then it may a good candidate as a supporting dielectric substrate for graphene-based nanodevices. Especially, the h-BN sheet has the similar bond structure as graphene with a slightly longer lattice constant. For the computation, we use the Vienna ab initio simulation package (VASP). The generalized gradient approximation (GGA) in the form of the PBE-type parameterization is employed. The ions are described via the projector augmented wave potentials, and the cutoff energy for the plane-wave basis is set to 400 eV. To include weak van der Waals (vdW) interactions, we adopt the Grimme's DFT-D2 vdW correction based on a semi-empirical GGA-type theory. Our calculations reveal that the localized states appear at the zigzag edge of the GNR on the h-BN sheet due to the flat band of the zigzag edge at the Fermi level and the localized states rapidly decay into the bulk. The open-edged graphene with a large corrugation allows some space between graphene and h-BN sheet. Therefore, atoms or molecules can be intercalated between them. We have considered various types of atoms for intercalation. The atoms are initially placed at the edge of the GNR or inserted in between GNR and h-BN sheet to find the effect of intercalated atoms on the atomic and electronic structure of graphene. We find that the impurity atoms at the edge of GNR are more stable than in between GNR and h-BN sheet for all cases considered. The nickel atom has the lowest energy difference of ~0.2 eV, which means that it is relatively easy to intercalate the Ni atom in this structure. Finally, the magnetic properties of intercalated atoms between GNR and h-BN sheet are investigated.

  • PDF

LEAP기반의 무선 센서 네트워크에서 가변적 상태를 고려한 에너지 효율적 다음 홉 노드 선택 기법 (Dynamic States Consideration for Next Hop Nodes Selection Method to Improve Energy Efficiency in LEAP based Wireless Sensor Networks)

  • 남수만;조대호
    • 한국지능시스템학회논문지
    • /
    • 제23권6호
    • /
    • pp.558-564
    • /
    • 2013
  • 무선 센서 네트워크는 제한된 에너지 자원을 포함하고 개방된 환경에서 스스로 운영된다. 이러한 센서 노드들은 한 필드에서 스스로 운영되기 때문에 싱크홀 공격이 쉽게 발생되어 공격자를 통해 센서들을 훼손시킬 수 있다. 싱크홀 공격은 초기에 구성된 라우팅 경로를 변경하여 훼손된 노드에서 중요한 정보를 탈취한다. LEAP은 싱크홀 공격에 반대하여 네 개의 키를 사용하여 모든 노드의 상태와 패킷을 인증하기 위해 제안되었다. 이 기법은 베이스 스테이션까지 패킷들을 안전하게 전송함에도 불구하고, 패킷들은 다음 홉 노드 상태 확인 없이 구성된 경로를 따라 전달된다. 본 논문에서, 우리는 이 문제를 해결하기 위해 에너지 효율성을 위한 다음 홉 노드 선택 기법을 제안한다. 우리의 제안 기법은 잔여 에너지, 공유된 키의 수, 여과된 허위 패킷의 수를 간주하여 다음 홉 노드를 평가한다. 설정된 임계값에 대해서 다음 홉 노드의 적합성 기준을 만족할 때 패킷은 다음 홉 노드에 전송된다. 우리는 효과적인 노드 선택을 통해 에너지 효율성과 공격 발생 지역의 우회를 향상시키는 것을 목표로 한다. 실험 결과는 LEAP과 비교하였을 때 싱크홀 공격에 반대하여 최대 6%의 에너지 절약과 함께 제안 기법의 타당성을 보여준다.

Controlling Spin State of Magnetic Molecules by Oxygen Binding Studied Using Scanning Tunneling Microscopy

  • Lee, Soon-hyeong;Chang, Yun Hee;Kim, Howon;Kim, Kyung Min;Kim, Yong-Hyun;Kahng, Se-Jong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.145.1-145.1
    • /
    • 2016
  • Binding and unbinding between molecular oxygen and metallo-porphyrin is a key process for oxygen delivery in respiration. It can be also used to control spin state of magnetic metallo-porphyrin molecules. Controlling and sensing spin states of magnetic molecules in such reactions at the single molecule level is essential for spintronic molecular device applications. Here, we demonstrate that spin states of metallo-porphyrin on surfaces can be controlled over by binding and unbinding of oxygen molecule, and be sensed using scanning tunneling microscopy and spectroscopy. Kondo localized state of metallo-porphyrin showed significant modification by the binding of oxygen molecule, implying that the spin state was changed. Our density functional theory calculation results explain the observations with the hybridization of unpaired spins in d and ${\pi}^*$ orbitals of metallo-porphyrin and oxygen, respectively. Our study opens up ways to control molecular spin state and Kondo effect by means of molecular binding and unbinding reactions on surfaces.

  • PDF

Scanning Probe Microscopy를 이용한 국소영역에서의 실리콘 나노크리스탈의 전기적 특성 분석 (Characterization of Electrical Properties of Si Nanocrystals Embedded in a SiO$_{2}$ Layer by Scanning Probe Microscopy)

  • 김정민;허현정;강치중;김용상
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권10호
    • /
    • pp.438-442
    • /
    • 2005
  • Si nanocrystal (Si NC) memory device has several advantages such as better retention, lower operating voltage, reduced punch-through and consequently a smaller cell area, suppressed leakage current. However, the physical and electrical reasons for this behavior are not completely understood but could be related to interface states of Si NCs. In order to find out this effect, we characterized electrical properties of Si NCs embedded in a SiO$_{2}$ layer by scanning probe microscopy (SPM). The Si NCs were generated by the laser ablation method with compressed Si powder and followed by a sharpening oxidation. In this step Si NCs are capped with a thin oxide layer with the thickness of 1$\~$2 nm for isolation and the size control. The size of 51 NCs is in the range of 10$\~$50 m and the density around 10$^{11}$/cm$^{2}$ It also affects the interface states of Si NCs, resulting in the change of electrical properties. Using a conducting tip, the charge was injected directly into each Si NC, and the image contrast change and dC/dV curve shift due to the trapped charges were monitored. The results were compared with C-V characteristics of the conventional MOS capacitor structure.

Signaling Protein Complex Formation in Detergent Resistant Membrane of Bovine Photoreceptor Rod Outer Segments

  • Liu, Han;Seno, Keiji;Hayashi, Fumio
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.275-277
    • /
    • 2002
  • We have recently found that a detergent-resistant raft like membrane (DRM) can be prepared from bovine rod outer segment membranes as a low-density buoyant fraction in sucrose density gradient ultracentrifugation. G protein (transducin) and its effector enzyme (phosphodiesterase: PDE) drastically change their affinities to DRM in the process of phototransduction. We report here that the recruitment of transducin and/or $^2$PDE to DRM has close relationship with their states in signal transduction. Active T$\alpha$/PDE-complex has a high affinity to DRM, whereas inactive transducin, or inactive PDE are excluded from DRM. Active T$\alpha$/PDE-complex seems to bind to a GTPase activating protein (GRS9) in multi- protein complexes localized on DRM. Physiological significance of the multi-protein complex on the raft-like membrane in vertebrate phototransduction would be discussed.

  • PDF

H-induced Magnetism at Stepped Si (100) Surface

  • Lee, Jun-Ho;Cho, Jun-Hyung
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.211-211
    • /
    • 2012
  • Using spin-polarized density-functional theory calculations, we find that the existence of either Peierls instability or antiferromagnetic spin ordering is sensitive to hydrogen passivation near the step. As hydrogens are covered on the terrace, the dangling bond electrons are localized at the step, leading to step-induced states. We investigate the competition between charge and spin orderings in dangling-bond (DB) wires of increasing lengths fabricated on an H-terminated vicinal Si(001) surface. We find antiferromagnetic (AF) ordering to be energetically much more favorable than charge ordering. The energy preference of AF ordering shrinks in an oscillatory way as the wire length increases. This oscillatory behavior can be interpreted in terms of quantum size effects as the DB electrons fill discrete quantum levels.

  • PDF

교번성장법을 이용해 성장한 InN/GaN 박막의 구조적, 광학적 특성 평가

  • 이관재;조병구;이현중;김진수;이진홍
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.472-472
    • /
    • 2013
  • 본 논문은 InN와 GaN를 교대로 증착하는 교번성장법을 이용해 제작한 4주기 InN/GaN 박막의 구조적, 광학적, 특성을 X-ray diffraction, Atomic force microscopy, Transmission electron microscopy과 저온 Photoluminescence (PL) 장비를 사용하여 분석한 결과를 보고한다. Fig. 1은 4주기 InN/GaN박막의 XRD 스펙트럼으로 GaN(0002)와 InN(0002)의 회절 신호를 관찰할 수 있다. 그러나 두 피크뿐만 아니라 InN와 GaN 사이에 구분이 되지 않은 추가 신호를 확인할 수 있다. 추가신호는 InN와 GaN 계면에서 발생하는 상호확산 확률로서 해석할 수 있다. Fig. 2는 다양한 조건에서 성장한 InN/GaN 시료의 PL스펙트럼으로 방출 파장은 각각 1,380, 1,290, 1,280, 1,271, 1,246 nm로 측정되었다. 성장 조건 변화에 따른 발광특성 변화를 박막에서 III족 원자 특히, In 원자의 성장 거동에 따른 구속준위(Localized states) 변화로 논의할 예정이다.

  • PDF

$La_{0.7}Sr_{0.3}FeO_{3}$ 세라믹스의 전기전도 특성 (Electrical Transport Properties of $La_{0.7}Sr_{0.3}FeO_{3}$)

  • 정우환
    • 한국전기전자재료학회논문지
    • /
    • 제14권5호
    • /
    • pp.376-382
    • /
    • 2001
  • Magnetic and transport properties in the ceramic specimen of L $a_{0.7}$S $r_{0.3}$Fe $O_3$ with orthohombic structure has been investigated. Weak ferromagnetism has been observed in a ceramic sample of L $a_{0.7}$S $r_{0.3}$Fe $O_3$. Large dielectric relaxation of Debye type is observed in paramagnetic states within the temperature range of 130K~200K. From the temperature dependence of the characteristic frequency, we concluded that the elementary process of the dispersion is related to holes hopping between F $e^{3+}$ and F $e^{4+}$ ions. The temperature dependencies of thermoelectric power and Dc conductivity suggest that the charge carrier responsible for the conduction are strongly localized. These experimental results have been interpreted in terms of a hopping process involving small polaron.n.laron.n.

  • PDF