• Title/Summary/Keyword: localization recognition system

Search Result 93, Processing Time 0.167 seconds

Robust Face Recognition System using AAM and Gabor Feature Vectors (AAM과 가버 특징 벡터를 이용한 강인한 얼굴 인식 시스템)

  • Kim, Sang-Hoon;Jung, Sou-Hwan;Jeon, Seoung-Seon;Kim, Jae-Min;Cho, Seong-Won;Chung, Sun-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.2
    • /
    • pp.1-10
    • /
    • 2007
  • In this paper, we propose a face recognition system using AAM and Gabor feature vectors. EBGM, which is prominent among face recognition algorithms employing Gabor feature vectors, requires localization of facial feature points where Gabor feature vectors are extracted. However, localization of facial feature points employed in EBGM is based on Gator jet similarity and is sensitive to initial points. Wrong localization of facial feature points affects face recognition rate. AAM is known to be successfully applied to localization of facial feature points. In this paper, we propose a facial feature point localization method which first roughly estimate facial feature points using AAM and refine facial feature points using Gabor jet similarity-based localization method with initial points set by the facial feature points estimated from AAM, and propose a face recognition system based on the proposed localization method. It is verified through experiments that the proposed face recognition system using the combined localization performs better than the conventional face recognition system using the Gabor similarity-based localization only like EBGM.

Image-based Localization Recognition System for Indoor Autonomous Navigation (실내 자율 비행을 위한 영상 기반의 위치 인식 시스템)

  • Moon, SungTae;Cho, Dong-Hyun;Han, Sang-Hyuck
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.128-136
    • /
    • 2013
  • Recently, the localization recognition system research has been studied using various sensors according to increased interest in autonomous navigation flight. In case of indoor environment which cannot support GPS information, we have to look for another way to recognize current position. The Image-based localization recognition system has been interested although there are lots of way to know current pose. In this paper, we explain the localization recognition system based on mark and implementation of autonomous navigation flight. In order to apply to real environment which cannot support marks, localization based on real-time 3D map building is discussed.

Underwater Robot Localization by Probability-based Object Recognition Framework Using Sonar Image (소나 영상을 이용한 확률적 물체 인식 구조 기반 수중로봇의 위치추정)

  • Lee, Yeongjun;Choi, Jinwoo;Choi, Hyun-Teak
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.4
    • /
    • pp.232-241
    • /
    • 2014
  • This paper proposes an underwater localization algorithm using probabilistic object recognition. It is organized as follows; 1) recognizing artificial objects using imaging sonar, and 2) localizing the recognized objects and the vehicle using EKF(Extended Kalman Filter) based SLAM. For this purpose, we develop artificial landmarks to be recognized even under the unstable sonar images induced by noise. Moreover, a probabilistic recognition framework is proposed. In this way, the distance and bearing of the recognized artificial landmarks are acquired to perform the localization of the underwater vehicle. Using the recognized objects, EKF-based SLAM is carried out and results in a path of the underwater vehicle and the location of landmarks. The proposed localization algorithm is verified by experiments in a basin.

Non-contact Palmprint Attendance System on PC Platform

  • Wu, Yuxin;Leng, Lu;Mao, Huapeng
    • Journal of Multimedia Information System
    • /
    • v.5 no.3
    • /
    • pp.179-188
    • /
    • 2018
  • In order to overcome the problems of contact palmprint recognition, a non-contact palmprint recognition system is developed on personal computer (PC) platform. Three methods, namely "double-line-single-point" (DLSP), "double-assistant-crosshair" (DAC) and "none-assistant-graphic" (NAG), are implemented for the palmprint localization to solve the severe technical challenges, including the complex background, variant illuminations, uncontrollable locations and gestures of hands. In NAG, hand segmentation and the cropping of region of interest are performed without any assistant graphics. The convex hull contour of hand helps detect the outside contour of little finger as well as the valley bottom between thumb and index finger. The three methods of palmprint localization have good operating efficiency and can meet the performance requirements of real-time system. Furthermore, an attendance system on PC platform is designed and developed based on non-contact palmprint recognition.

Self-localization of Mobile Robots by the Detection and Recognition of Landmarks (인공표식과 자연표식을 결합한 강인한 자기위치추정)

  • 권인소;장기정;김성호;이왕헌
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.306-311
    • /
    • 2003
  • This paper presents a novel localization paradigm for mobile robots based on artificial and natural landmarks. A model-based object recognition method detects natural landmarks and conducts the global and topological localization. In addition, a metric localization method using artificial landmarks is fused to complement the deficiency of topology map and guide to action behavior. The recognition algorithm uses a modified local Zernike moments and a probabilistic voting method for the robust detection of objects in cluttered indoor environments. An artificial landmark is designed to have a three-dimensional multi-colored structure and the projection distortion of the structure encodes the distance and viewing direction of the robot. We demonstrate the feasibility of the proposed system through real world experiments using a mobile robot, KASIRI-III.

  • PDF

Slab Region Localization for Text Extraction using SIFT Features (문자열 검출을 위한 슬라브 영역 추정)

  • Choi, Jong-Hyun;Choi, Sung-Hoo;Yun, Jong-Pil;Koo, Keun-Hwi;Kim, Sang-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.1025-1034
    • /
    • 2009
  • In steel making production line, steel slabs are given a unique identification number. This identification number, Slab management number(SMN), gives information about the use of the slab. Identification of SMN has been done by humans for several years, but this is expensive and not accurate and it has been a heavy burden on the workers. Consequently, to improve efficiency, automatic recognition system is desirable. Generally, a recognition system consists of text localization, text extraction, character segmentation, and character recognition. For exact SMN identification, all the stage of the recognition system must be successful. In particular, the text localization is great important stage and difficult to process. However, because of many text-like patterns in a complex background and high fuzziness between the slab and background, directly extracting text region is difficult to process. If the slab region including SMN can be detected precisely, text localization algorithm will be able to be developed on the more simple method and the processing time of the overall recognition system will be reduced. This paper describes about the slab region localization using SIFT(Scale Invariant Feature Transform) features in the image. First, SIFT algorithm is applied the captured background and slab image, then features of two images are matched by Nearest Neighbor(NN) algorithm. However, correct matching rate can be low when two images are matched. Thus, to remove incorrect match between the features of two images, geometric locations of the matched two feature points are used. Finally, search rectangle method is performed in correct matching features, and then the top boundary and side boundaries of the slab region are determined. For this processes, we can reduce search region for extraction of SMN from the slab image. Most cases, to extract text region, search region is heuristically fixed [1][2]. However, the proposed algorithm is more analytic than other algorithms, because the search region is not fixed and the slab region is searched in the whole image. Experimental results show that the proposed algorithm has a good performance.

Development of Map Building Algorithm for Mobile Robot by Using RFID (모바일 로봇에서 RFID를 이용한 지도작성 알고리즘 개발)

  • Kim, Si-Seup;Seon, Jeong-An;Kee, Chang-Doo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.133-138
    • /
    • 2011
  • RFID system can be used to improve object recognition, map building and localization for robot area. A novel method of indoor navigation system for a mobile robot is proposed using RFID technology. The mobile robot With a RFID reader and antenna is able to find what obstacles are located where in circumstance and can build the map similar to indoor circumstance by combining RFID information and distance data obtained from sensors. Using the map obtained, the mobile robot can avoid obstacles and finally reach the desired goal by $A^*$ algorithm. 3D map which has the advantage of robot navigation and manipulation is able to be built using z dimension of products. The proposed robot navigation system is proved to apply for SLAM and path planning in unknown circumstance through numerous experiments.

The Method of Elevation Accuracy In Sound Source Localization System (음원 위치 추정 시스템의 정확도 향상 방법)

  • Kim, Yong-Eun;Chung, Jin-Gyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.2
    • /
    • pp.24-29
    • /
    • 2009
  • Sound source localization system is used in a robot, a video conference and CCTV(Closed-circuit television) systems. In this Sound source localization systems are applied to human and they can receive a number of sound data frames during speaking. In this paper, we propose methods which is reducing angle estimation error by selecting sound data frame which can more precisely compute the angles from inputted sound data frame. After selected data converted to angle, the error of sound source localization recognition system can be reduced by applying to medium filter. By the experiment using proposed system it is shown that the average error of angle estimation in sound source recognition system can be reduced up to 31 %.

Mobile Robot Localization Based on Hexagon Distributed Repeated Color Patches in Large Indoor Area (넓은 실내 공간에서 반복적인 칼라패치의 6각형 배열에 의한 이동로봇의 위치계산)

  • Chen, Hong-Xin;Wang, Shi;Han, Hoo-Sek;Kim, Hyong-Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.4
    • /
    • pp.445-450
    • /
    • 2009
  • This paper presents a new mobile robot localization method for indoor robot navigation. The method uses hexagon distributed color-coded patches on the ceiling and a camera is installed on the robot facing the ceiling to recognize these patches. The proposed "cell-coded map", with the use of only seven different kinds of color-coded landmarks distributed in hexagonal way, helps reduce the complexity of the landmark structure and the error of landmark recognition. This technique is applicable for navigation in an unlimited size of indoor space. The structure of the landmarks and the recognition method are introduced. And 2 rigid rules are also used to ensure the correctness of the recognition. Experimental results prove that the method is useful.

Vehicle License Plate Recognition System using SSD-Mobilenet and ResNet for Mobile Device (SSD-Mobilenet과 ResNet을 이용한 모바일 기기용 자동차 번호판 인식시스템)

  • Kim, Woonki;Dehghan, Fatemeh;Cho, Seongwon
    • Smart Media Journal
    • /
    • v.9 no.2
    • /
    • pp.92-98
    • /
    • 2020
  • This paper proposes a vehicle license plate recognition system using light weight deep learning models without high-end server. The proposed license plate recognition system consists of 3 steps: [license plate detection]-[character area segmentation]-[character recognition]. SSD-Mobilenet was used for license plate detection, ResNet with localization was used for character area segmentation, ResNet was used for character recognition. Experiemnts using Samsung Galaxy S7 and LG Q9, accuracy showed 85.3% accuracy and around 1.1 second running time.