• 제목/요약/키워드: localization algorithm

검색결과 812건 처리시간 0.025초

Improved DV-Hop Localization Algorithm Based on Bat Algorithm in Wireless Sensor Networks

  • Liu, Yuan;Chen, Junjie;Xu, Zhenfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권1호
    • /
    • pp.215-236
    • /
    • 2017
  • Obtaining accurate location information is important in practical applications of wireless sensor networks (WSNs). The distance vector hop (DV-Hop) is a frequently-used range-free localization algorithm in WSNs, but it has low localization accuracy. Moreover, despite various improvements to DV-Hop-based localization algorithms, maintaining a balance between high localization accuracy and good stability and convergence is still a challenge. To overcome these shortcomings, we proposed an improved DV-Hop localization algorithm based on the bat algorithm (IBDV-Hop) for WSNs. The IBDV-Hop algorithm incorporates optimization methods that enhance the accuracy of the average hop distance and fitness function. We also introduce a nonlinear dynamic inertial weight strategy to extend the global search scope and increase the local search accuracy. Moreover, we develop an updated solutions strategy that avoids premature convergence by the IBDV-Hop algorithm. Both theoretical analysis and simulation results show that the IBDV-Hop algorithm achieves higher localization accuracy than the original DV-Hop algorithm and other improved algorithms. The IBDV-Hop algorithm also exhibits good stability, search capability and convergence, and it requires little additional time complexity and energy consumption.

Point In Triangle Testing Based Trilateration Localization Algorithm In Wireless Sensor Networks

  • Zhang, Aiqing;Ye, Xinrong;Hu, Haifeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권10호
    • /
    • pp.2567-2586
    • /
    • 2012
  • Localization of sensor nodes is a key technology in Wireless Sensor Networks(WSNs). Trilateration is an important position determination strategy. To further improve the localization accuracy, a novel Trilateration based on Point In Triangle testing Localization (TPITL)algorithm is proposed in the paper. Unlike the traditional trilateration localization algorithm which randomly selects three neighbor anchors, the proposed TPITL algorithm selects three special neighbor anchors of the unknown node for trilateration. The three anchors construct the smallest anchor triangle which encloses the unknown node. To choose the optimized anchors, we propose Point In Triangle testing based on Distance(PITD) method, which applies the estimated distances for trilateration to reduce the PIT testing errors. Simulation results show that the PIT testing errors of PITD are much lower than Approximation PIT(APIT) method and the proposed TPITL algorithm significantly improves the localization accuracy.

Error Estimation Method for Matrix Correlation-Based Wi-Fi Indoor Localization

  • Sun, Yong-Liang;Xu, Yu-Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권11호
    • /
    • pp.2657-2675
    • /
    • 2013
  • A novel neighbor selection-based fingerprinting algorithm using matrix correlation (MC) for Wi-Fi localization is presented in this paper. Compared with classic fingerprinting algorithms that usually employ a single received signal strength (RSS) sample, the presented algorithm uses multiple on-line RSS samples in the form of a matrix and measures correlations between the on-line RSS matrix and RSS matrices in the radio-map. The algorithm makes efficient use of on-line RSS information and considers RSS variations of reference points (RPs) for localization, so it offers more accurate localization results than classic neighbor selection-based algorithms. Based on the MC algorithm, an error estimation method using artificial neural network is also presented to fuse available information that includes RSS samples and localization results computed by the MC algorithm and model the nonlinear relationship between the available information and localization errors. In the on-line phase, localization errors are estimated and then used to correct the localization results to reduce negative influences caused by a static radio-map and RP distribution. Experimental results demonstrate that the MC algorithm outperforms the other neighbor selection-based algorithms and the error estimation method can reduce the mean of localization errors by nearly half.

Probabilistic localization of the service robot by mapmatching algorithm

  • Lee, Dong-Heui;Woojin Chung;Kim, Munsang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.92.3-92
    • /
    • 2002
  • A lot of localization algorithms have been developed in order to achieve autonomous navigation. However, most of localization algorithms are restricted to certain conditions. In this paper, Monte Carlo localization scheme with a map-matching algorithm is suggested as a robust localization method for the Public Service Robot to accomplish its tasks autonomously. Monte Carlo localization can be applied to local, global and kidnapping localization problems. A range image based measure function and a geometric pattern matching measure function are applied for map matching algorithm. This map matching method can be applied to both polygonal environments and un-polygonal environments and achieves...

  • PDF

캡스톤 디자인을 통한 3D Depth 센서 기반 HRI 시스템의 위치추정 알고리즘 연구 (A Study of Localization Algorithm of HRI System based on 3D Depth Sensor through Capstone Design)

  • 이동명
    • 공학교육연구
    • /
    • 제19권6호
    • /
    • pp.49-56
    • /
    • 2016
  • The Human Robot Interface (HRI) based on 3D depth sensor on the docent robot is developed and the localization algorithm based on extended Kalman Filter (EKFLA) are proposed through the capstone design by graduate students in this paper. In addition to this, the performance of the proposed EKFLA is also analyzed. The developed HRI system consists of the route generation and localization algorithm, the user behavior pattern awareness algorithm, the map data generation and building algorithm, the obstacle detection and avoidance algorithm on the robot control modules that control the entire behaviors of the robot. It is confirmed that the improvement ratio of the localization error in EKFLA on the scenarios 1-3 is increased compared with the localization algorithm based on Kalman Filter (KFLA) as 21.96%, 25.81% and 15.03%, respectively.

실내외 천이영역 적용을 위한 WLAN/GPS 복합 측위 알고리즘 (A WLAN/GPS Hybrid Localization Algorithm for Indoor/Outdoor Transit Area)

  • 이영준;김희성;이형근
    • 제어로봇시스템학회논문지
    • /
    • 제17권6호
    • /
    • pp.610-618
    • /
    • 2011
  • For improved localization around the indoor/outdoor transit area of buildings, this paper proposes an efficient algorithm combining the measurements from the WLAN (Wireless Local Area Network) and the GPS (Global Positioning System) for. The proposed hybrid localization algorithm considers both multipath errors and NLOS (Non-Line-of-Sight) errors, which occur in most wireless localization systems. To detect and isolate multipath errors occurring in GPS measurements, the propose algorithm utilizes conventional multipath test statistics. To convert WLAN signal strength measurements to range estimates in the presence of NLOS errors, a simple and effective calibration algorithm is designed to compute conversion parameters. By selecting and combining the reliable GPS and WLAN measurements, the proposed hybrid localization algorithm provides more accurate location estimates. An experiment result demonstrates the performance of the proposed algorithm.

A Range-Based Monte Carlo Box Algorithm for Mobile Nodes Localization in WSNs

  • Li, Dan;Wen, Xianbin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권8호
    • /
    • pp.3889-3903
    • /
    • 2017
  • Fast and accurate localization of randomly deployed nodes is required by many applications in wireless sensor networks (WSNs). However, mobile nodes localization in WSNs is more difficult than static nodes localization since the nodes mobility brings more data. In this paper, we propose a Range-based Monte Carlo Box (RMCB) algorithm, which builds upon the Monte Carlo Localization Boxed (MCB) algorithm to improve the localization accuracy. This algorithm utilizes Received Signal Strength Indication (RSSI) ranging technique to build a sample box and adds a preset error coefficient in sampling and filtering phase to increase the success rate of sampling and accuracy of valid samples. Moreover, simplified Particle Swarm Optimization (sPSO) algorithm is introduced to generate new samples and avoid constantly repeated sampling and filtering process. Simulation results denote that our proposed RMCB algorithm can reduce the location error by 24%, 14% and 14% on average compared to MCB, Range-based Monte Carlo Localization (RMCL) and RSSI Motion Prediction MCB (RMMCB) algorithm respectively and are suitable for high precision required positioning scenes.

WSN Lifetime Analysis: Intelligent UAV and Arc Selection Algorithm for Energy Conservation in Isolated Wireless Sensor Networks

  • Perumal, P.Shunmuga;Uthariaraj, V.Rhymend;Christo, V.R.Elgin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권3호
    • /
    • pp.901-920
    • /
    • 2015
  • Wireless Sensor Networks (WSNs) are widely used in geographically isolated applications like military border area monitoring, battle field surveillance, forest fire detection systems, etc. Uninterrupted power supply is not possible in isolated locations and hence sensor nodes live on their own battery power. Localization of sensor nodes in isolated locations is important to identify the location of event for further actions. Existing localization algorithms consume more energy at sensor nodes for computation and communication thereby reduce the lifetime of entire WSNs. Existing approaches also suffer with less localization coverage and localization accuracy. The objective of the proposed work is to increase the lifetime of WSNs while increasing the localization coverage and localization accuracy. A novel intelligent unmanned aerial vehicle anchor node (IUAN) is proposed to reduce the communication cost at sensor nodes during localization. Further, the localization computation cost is reduced at each sensor node by the proposed intelligent arc selection (IAS) algorithm. IUANs construct the location-distance messages (LDMs) for sensor nodes deployed in isolated locations and reach the Control Station (CS). Further, the CS aggregates the LDMs from different IUANs and computes the position of sensor nodes using IAS algorithm. The life time of WSN is analyzed in this paper to prove the efficiency of the proposed localization approach. The proposed localization approach considerably extends the lifetime of WSNs, localization coverage and localization accuracy in isolated environments.

차선 유실구간 측위를 위한 레이저 스캐너 기반 고정 장애물 탐지 알고리즘 개발 (Laser Scanner based Static Obstacle Detection Algorithm for Vehicle Localization on Lane Lost Section)

  • 서호태;박성렬;이경수
    • 자동차안전학회지
    • /
    • 제9권3호
    • /
    • pp.24-30
    • /
    • 2017
  • This paper presents the development of laser scanner based static obstacle detection algorithm for vehicle localization on lane lost section. On urban autonomous driving, vehicle localization is based on lane information, GPS and digital map is required to ensure. However, in actual urban roads, the lane data may not come in due to traffic jams, intersections, weather conditions, faint lanes and so on. For lane lost section, lane based localization is limited or impossible. The proposed algorithm is designed to determine the lane existence by using reliability of front vision data and can be utilized on lane lost section. For the localization, the laser scanner is used to distinguish the static object through estimation and fusion process based on the speed information on radar data. Then, the laser scanner data are clustered to determine if the object is a static obstacle such as a fence, pole, curb and traffic light. The road boundary is extracted and localization is performed to determine the location of the ego vehicle by comparing with digital map by detection algorithm. It is shown that the localization using the proposed algorithm can contribute effectively to safe autonomous driving.

Weighted Centroid Localization Algorithm Based on Mobile Anchor Node for Wireless Sensor Networks

  • Ma, Jun-Ling;Lee, Jung-Hyun;Rim, Kee-Wook;Han, Seung-Jin
    • 한국공간정보시스템학회 논문지
    • /
    • 제11권2호
    • /
    • pp.1-6
    • /
    • 2009
  • Localization of nodes is a key technology for application of wireless sensor network. Having a GPS receiver on every sensor node is costly. In the past, several approaches, including range-based and range-free, have been proposed to calculate positions for randomly deployed sensor nodes. Most of them use some special nodes, called anchor nodes, which are assumed to know their own locations. Other sensors compute their locations based on the information provided by these anchor nodes. This paper uses a single mobile anchor node to move in the sensing field and broadcast its current position periodically. We provide a weighted centroid localization algorithm that uses coefficients, which are decided by the influence of mobile anchor node to unknown nodes, to prompt localization accuracy. We also suggest a criterion which is used to select mobile anchor node which involve in computing the position of nodes for improving localization accuracy. Weighted centroid localization algorithm is simple, and no communication is needed while locating. The localization accuracy of weighted centroid localization algorithm is better than maximum likelihood estimation which is used very often. It can be applied to many applications.

  • PDF