• Title/Summary/Keyword: local search algorithm

Search Result 447, Processing Time 0.027 seconds

The Variable Amplitude Coefficient Fireworks Algorithm with Uniform Local Search Operator

  • Li, Lixian;Lee, Jaewan
    • Journal of Internet Computing and Services
    • /
    • v.21 no.3
    • /
    • pp.21-28
    • /
    • 2020
  • Fireworks Algorithm (FWA) is a relatively novel swarm-based metaheuristic algorithm for global optimization. To solve the low-efficient local searching problem and convergence of the FWA, this paper presents a Variable Amplitude Coefficient Fireworks Algorithm with Uniform Local Search Operator (namely VACUFWA). Firstly, the explosive amplitude is used to adjust improving the convergence speed dynamically. Secondly, Uniform Local Search (ULS) enhances exploitation capability of the FWA. Finally, the ULS and Variable Amplitude Coefficient operator are used in the VACUFWA. The comprehensive experiment carried out on 13 benchmark functions. Its results indicate that the performance of VACUFWA is significantly improved compared with the FWA, Differential Evolution, and Particle Swarm Optimization.

An Iterative Local Search Algorithm for Rural Postman Problems (Rural Postman Problem 해법을 위한 Iterative Local Search 알고리즘)

  • 강명주
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.1
    • /
    • pp.48-53
    • /
    • 2002
  • This paper Proposes an iterative Local Search (ILS) algorithm for Rural Postman Problems (RPPs). LS searches neighbors from an initial solution in solution space and obtains a nearoptimal solution which can be a local-minima. As an extension of LS, the ILS algorithm is a method that uses various initial solutions for LS. Hence. ILS can overcome the defect of LS. This paper proposes LS and ILS methods for 18 RPPs and analyzes the results of LS and ILS. In the simulation results, the ILS method obtained the better results than the LS method.

  • PDF

Optimum Allocation of Pipe Support Using Combined Optimization Algorithm by Genetic Algorithm and Random Tabu Search Method (유전알고리즘과 Random Tabu 탐색법을 조합한 최적화 알고리즘에 의한 배관지지대의 최적배치)

  • 양보석;최병근;전상범;김동조
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.71-79
    • /
    • 1998
  • This paper introduces a new optimization algorithm which is combined with genetic algorithm and random tabu search method. Genetic algorithm is a random search algorithm which can find the global optimum without converging local optimum. And tabu search method is a very fast search method in convergent speed. The optimizing ability and convergent characteristics of a new combined optimization algorithm is identified by using a test function which have many local optimums and an optimum allocation of pipe support. The caculation results are compared with the existing genetic algorithm.

  • PDF

Hybrid Genetic and Local Search (HGLS) Algorithm for Channel Assignment in FDMA Wireless Communication Network (FDMA 무선통신 네트워크에서 채널할당을 위한 HGLS 알고리듬)

  • Kim, Sung-Soo;Min, Seung-Ki
    • IE interfaces
    • /
    • v.18 no.4
    • /
    • pp.504-511
    • /
    • 2005
  • The NP-hard channel assignment problem becomes more and more important to use channels as efficiently as possible because there is a rapidly growing demand and the number of usable channel is very limited. The hybrid genetic and local search (HGLS) method in this paper is a hybrid method of genetic algorithm with no interference channel assignment (NICA) in clustering stage for diversified search and local search in tuning stage when the step of search is near convergence for minimizing blocking calls. The new representation of solution is also proposed for effective search and computation for channel assignment.

AN APPROXIMATE GREEDY ALGORITHM FOR TAGSNP SELECTION USING LINKAGE DISEQUILIBRIUM CRITERIA

  • Wang, Ying;Feng, Enmin;Wang, Ruisheng
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.493-500
    • /
    • 2008
  • In this paper, we first construct a mathematical model for tagSNP selection based on LD measure $r^2$, then aiming at this kind of model, we develop an efficient algorithm, which is called approximate greedy algorithm. This algorithm is able to make up the disadvantage of the greedy algorithm for tagSNP selection. The key improvement of our approximate algorithm over greedy algorithm lies in that it adds local replacement(or local search) into the greedy search, tagSNP is replaced with the other SNP having greater similarity degree with it, and the local replacement is performed several times for a tagSNP so that it can improve the tagSNP set of the local precinct, thereby improve tagSNP set of whole precinct. The computational results prove that our approximate greedy algorithm can always find more efficient solutions than greedy algorithm, and improve the tagSNP set of whole precinct indeed.

  • PDF

Genetic Algorithm with the Local Fine-Tuning Mechanism (유전자 알고리즘을 위한 지역적 미세 조정 메카니즘)

  • 임영희
    • Korean Journal of Cognitive Science
    • /
    • v.4 no.2
    • /
    • pp.181-200
    • /
    • 1994
  • In the learning phase of multilyer feedforword neural network,there are problems such that local minimum,learning praralysis and slow learning speed when backpropagation algorithm used.To overcome these problems, the genetic algorithm has been used as learing method in the multilayer feedforword neural network instead of backpropagation algorithm.However,because the genetic algorith, does not have any mechanism for fine-tuned local search used in backpropagation method,it takes more time that the genetic algorithm converges to a global optimal solution.In this paper,we suggest a new GA-BP method which provides a fine-tunes local search to the genetic algorithm.GA-BP method uses gradient descent method as one of genetic algorithm's operators such as mutation or crossover.To show the effciency of the developed method,we applied it to the 3-parity bit problem with analysis.

K-Hop Community Search Based On Local Distance Dynamics

  • Meng, Tao;Cai, Lijun;He, Tingqin;Chen, Lei;Deng, Ziyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3041-3063
    • /
    • 2018
  • Community search aims at finding a meaningful community that contains the query node and also maximizes (minimizes) a goodness metric. This problem has recently drawn intense research interest. However, most metric-based algorithms tend to include irrelevant subgraphs in the identified community. Apart from the user-defined metric algorithm, how can we search the natural community that the query node belongs to? In this paper, we propose a novel community search algorithm based on the concept of the k-hop and local distance dynamics model, which can naturally capture a community that contains the query node. The basic idea is to envision the nodes that k-hop away from the query node as an adaptive local dynamical system, where each node only interacts with its local topological structure. Relying on a proposed local distance dynamics model, the distances among nodes change over time, where the nodes sharing the same community with the query node tend to gradually move together, while other nodes stay far away from each other. Such interplay eventually leads to a steady distribution of distances, and a meaningful community is naturally found. Extensive experiments show that our community search algorithm has good performance relative to several state-of-the-art algorithms.

Solving Facility Rearrangement Problem Using a Genetic Algorithm and a Heuristic Local Search

  • Suzuki, Atsushi;Yamamoto, Hisashi
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.2
    • /
    • pp.170-175
    • /
    • 2012
  • In this paper, a procedure using a genetic algorithm (GA) and a heuristic local search (HLS) is proposed for solving facility rearrangement problem (FRP). FRP is a decision problem for stopping/running of facilities and integration of stopped facilities to running facilities to maximize the production capacity of running facilities under the cost constraint. FRP is formulated as an integer programming model for maximizing the total production capacity under the constraint of the total facility operating cost. In the cases of 90 percent of cost constraint and more than 20 facilities, the previous solving method was not effective. To find effective alternatives, this solving procedure using a GA and a HLS is developed. Stopping/running of facilities are searched by GA. The shifting the production operation of stopped facilities into running facilities is searched by HLS, and this local search is executed for one individual in this GA procedure. The effectiveness of the proposed procedure using a GA and HLS is demonstrated by numerical experiment.

MOTION VECTOR DETECTION ALGORITHM USING THE STEEPEST DESCENT METHOD EFFECTIVE FOR AVOIDING LOCAL SOLUTIONS

  • Konno, Yoshinori;Kasezawa, Tadashi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.460-465
    • /
    • 2009
  • This paper presents a new algorithm that includes a mechanism to avoid local solutions in a motion vector detection method that uses the steepest descent method. Two different implementations of the algorithm are demonstrated using two major search methods for tree structures, depth first search and breadth first search. Furthermore, it is shown that by avoiding local solutions, both of these implementations are able to obtain smaller prediction errors compared to conventional motion vector detection methods using the steepest descent method, and are able to perform motion vector detection within an arbitrary upper limit on the number of computations. The effects that differences in the search order have on the effectiveness of avoiding local solutions are also presented.

  • PDF

Application of Variable Neighborhood Search Algorithms to a Static Repositioning Problem in Public Bike-Sharing Systems (공공 자전거 정적 재배치에의 VNS 알고리즘 적용)

  • Yim, Dong-Soon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.41 no.1
    • /
    • pp.41-53
    • /
    • 2016
  • Static repositioning is a well-known and commonly used strategy to maximize customer satisfaction in public bike-sharing systems. Repositioning is performed by trucks at night when no customers are in the system. In models that represent the static repositioning problem, the decision variables are truck routes and the number of bikes to pick up and deliver at each rental station. To simplify the problem, the decision on the number of bikes to pick up and deliver is implicitly included in the truck routes. Two relocation-based local search algorithms (1-relocate and 2-relocate) with the best-accept strategy are incorporated into a variable neighborhood search (VNS) to obtain high-quality solutions for the problem. The performances of the VNS algorithm with the effect of local search algorithms and shaking strength are evaluated with data on Tashu public bike-sharing system operating in Daejeon, Korea. Experiments show that VNS based on the sequential execution of two local search algorithms generates good, reliable solutions.