
MOTION VECTOR DETECTION ALGORITHM USING
THE STEEPEST DESCENT METHOD EFFECTIVE FOR AVOIDING LOCAL SOLUTIONS

Yoshinori Konno � and Tadashi Kasezawa ��

� Hitachi Information & Control Solutions, Ltd.
Ibaraki, Japan

�� College of Engineering, Nihon University
Fukushima, Japan

E-mail: kasezawa@cs.ce.nihon-u.ac.jp

ABSTRACT

This paper presents a new algorithm that includes a mech-
anism to avoid local solutions in a motion vector detection
method that uses the steepest descent method. Two differ-
ent implementations of the algorithm are demonstrated us-
ing two major search methods for tree structures, depth first
search and breadth first search. Furthermore, it is shown that
by avoiding local solutions, both of these implementations
are able to obtain smaller prediction errors compared to con-
ventional motion vector detection methods using the steep-
est descent method, and are able to perform motion vector
detection within an arbitrary upper limit on the number of
computations. The effects that differences in the search or-
der have on the effectiveness of avoiding local solutions are
also presented.

Keywords: motion vector detection, block matching, steep-
est descent method

1. INTRODUCTION

In many video encoding schemes, a motion compensation
prediction scheme [1], [2] is employed, and motion vectors
need to be detected during the encoding process. A variety
of motion vector detection methods have been proposed so
far, which can be divided into two classes : (1) full search
(FS) and (2) methods that aim to reduce the number of com-
putations (such as three-step-search [3] and gradient descent
search [4]).

Although FS is able to achieve smaller prediction er-
rors, it requires a large number of computations as it in-
volves an exhaustive search throughout the search domain.
While the second class of methods do not perform an ex-
haustive search, they are susceptible to falling into a locally
optimal solution. A variety of methods [5], [6] have been
proposed recently for avoiding the local solution problem.
These methods are generally equipped with a mechanism
for setting the initial search point in the vicinity of the opti-
mal solution in order to avoid local solutions.

In recent years, there has been a rapid increase in de-
vices that have functions for sending or recording video, and
the range of features demanded of motion vector detection
is becoming more and more diverse. One of the most sought

after features is the reduction in prediction errors for a given
fixed number of computations. This requirement is based on
the following background.

In general, when motion vector detection is implemented
in devices that operate in real time, the desired motion vec-
tor needs to be found within some constant time, regardless
of whether the method is implemented at a hardware or soft-
ware level. In other words, the desired motion vector needs
to be found within a upper limit on the number of compu-
tations. This upper limit varies depending on the method
used for motion vector search and the required power con-
sumption of the target device. Therefore, methods that help
reduce the prediction error as much as possible within an
arbitrary upper limit on the number of computations are in
demand.

If we examine the above-mentioned classes in terms of
this demand, the first class uses a constant number of com-
putations and do not normally anticipate change in the num-
ber of computations (i.e., the process being cutoff midway).
Similarly, in the second class, the number of computations
required generally varies depending on the image being pro-
cessed, and these methods are not intended to execute the
process within a fixed number of computations.

For this reason, the authors have proposed a new algo-
rithm (hereinafter ALM) that includes a mechanism to avoid
local minima in a motion vector search method that uses the
steepest descent method. ALM is able to avoid local solu-
tions without an additional procedure for setting the initial
search point in the vicinity of the optimal solution. Fur-
thermore, within an arbitrary upper limit on the number of
computations, ALM is able to perform motion vector detec-
tion, and is able to obtain prediction results close to FS if
the number of computations is increased.

Because the search path in ALM forms a tree structure,
it can be implemented using a number of different search or-
ders. In this paper, two different implementations of ALM
are demonstrated using two major search methods for tree
structures, depth first search and breadth first search. Fur-
thermore, it is shown that by avoiding local solutions, both
of these implementations of ALM are able to obtain smaller
prediction errors compared to conventional motion search
methods using the steepest descent method, and are able to

460



perform motion vector search within an arbitrary upper limit
on the number of computations. The effects that differences
in the search order have on the effectiveness of avoiding lo-
cal solutions are also presented.

2. ALGORITHM

2.1 Motion Detection Algorithm Using the Steepest De-
scent Method

The steepest descent method [7] is a method for search-
ing for the minimum value of a function by iteratively per-
forming the process of “setting the next search point to the
point formed by advancing by some distance in the direc-
tion where the gradient of the function decreases the most
from the current search point.”

If we let ���� �� (hereinafter matching error) be the sum
of the absolute errors between a template block in a template
image (the search source) and a reference block with a mo-
tion vector ��� �� in a reference image (the search target),
the motion vector can be found using the steepest descent
method as follows.

Step 1 Let the current motion vector ��� �� � ��� �� and
find ���� ��.

Step 2 Find the unknown ������ ������� � � � ���� �
� � � for the current motion vector ��� ��.

Step 3 Let ��� �� be the value of ��� �� that gives the mini-
mum value of ������ ����when�� � � � �,�� �
� � � and ��� �� �� ��� ��. If ���� �� � ������ ����,
let the current motion vector ��� ��� ��� �� � � ��
and return to Step 2. Otherwise, let the motion vector
giving the minimum matching error ���� ��� � ��� ��
and end the search.

2.2 Motion Detection Algorithm for Avoiding Local So-
lutions Using the Steepest Descent Method

2.2.1 Overview

The steepest descent method is a method that searches the
“valley floor” by advancing along the direction with the
largest decrease in gradient, and is known to be generally
susceptible to falling into local solutions. The proposed
method therefore begins searching the “valley floor” in mul-
tiple directions where the gradient is downwards. Once the
“valley floor” has been reached, the search then continues
along multiple “valleys”, searching for even lower “valley
floors”.

� The search is performed from the search starting point
in	 directions where the reduction in gradient is large,
i.e., the gradient is small. For these 	 directions, the
gradient is allowed to increase as long as it is within
the smaller 	 directions.

� The search for minimal points in 	 directions is per-
formed by proceeding along the direction with the
minimum value of gradient, the same as the method

u

v

Starting Point

Contour Mapping
of e(u,v)

(a)

u

v

Starting Point

Contour Mapping
of e(u,v)

(b)

Fig. 1: Outlines of search paths. (a) SDM. (b) ALM.

of steepest descent. If the direction of advancement
has a minimum value of gradient from among all the
directions, a direction where the gradient increases
is also allowable. However, during the process of
searching for the minimum point in the correspond-
ing direction, increases in the gradient shall be per-
mitted up to 
 times, and if a new minimum point
that updates the minimum value is not found by then,
search in that direction is terminated.

� Once a minimum point is found that updates the min-
imum value, the search for further minimum points
is performed from that point in 	 directions where
the gradient is low, the same as for the search starting
point.

Figure 1 shows outlines of the search paths in the method
shown in 2.1 (hereinafter SDM) and in ALM. The diagram
uses contour lines to display an outline of ���� ��, and the
arrows in the diagram show the search path. As shown in the
diagram, the search path of ALM is a tree structure. ALM
can therefore be implemented using different search orders
by using depth first search or breadth first search, etc., as
shown in 2.2.3 and 2.2.2. Figure 2 shows an overview of the
search order in depth first search and breadth first search.

2.2.2 Algorithm Using Breadth First Search

ALM using breadth first search (hereinafter ALMB) is com-
posed of the three procedures : ��� 
, ������ 
��� ��, and
������ ���� ��������� �� �� �� as shown below.

461



1

2
3
4

5 6
7

8 9
10
11

12 13
14

(a)

1

2

3

4

5

6

7
8
9
10
11
12
13
14

(b)

Fig. 2: Overview of search order. (a) Depth first search. (b)
Breadth first search.

��� �

Step 1 Let the current motion vector ��� �� � ��� ��, find
���� ��, and let the flag that represents belonging to
a motion vector search path ���� �� � �	
�. Let
the motion vector that gives the minimum matching
error ���� ��� � ��� ��. Add ��� �� to the queue for
holding motion vectors waiting to be searched (here-
inafter search queue).

Step 2 Take the first motion vector ��� �� from the search
queue, and perform ������ 
��� ��.

Step 3 If the search queue is empty, the search ends. Oth-
erwise, return to Step 2.

������ ��	
 ��

Step 1 Find the unknown ��� � �� � � �� for the current
motion vector ��� ��where�� � � � �,�� � � � �.

Step 2 Let ���� ��� be the value of ��� �� that gives the �’th
smallest value of ��� � �� � � �� where �� � � �
���� � � � �� ��� �� �� ��� �� and ���� �� � � �� �
�
���. Let the current search direction ���� ��� be
�� �.

Step 3 If � � 	, end. Otherwise, search for the vector
that gives the next minimum point by making use of
������ ���� ��������� �� ��� ���, and if the motion
vector that gives the next minimum point ���� ��� ex-
ists, add that vector to the search queue.

Step 4 Let �� �� �, and return to Step 3.

����
� ���� �������	
 �
 �
 ��

Step 1 Let the number of increases in the gradient ��� �
�，and the minimum value updated flag ����� �

�
���.

Step 2

Case 1 If ���� �� � ��� � �� � � ��, let the cur-
rent motion vector ��� ��� ��� �� � � �� and
���� �� � �	
�. If ���� �� updates the min-
imum value, let ����� � �	
�, let the mo-
tion vector that gives the next minimum value
���� ���� ��� ��, and let the vector that gives the
minimum matching error ���� ���� ��� ��.

Case 2 If ���� �� � ��� � �� � � �� and ����� �
�	
�, the motion vector that gives the next
minimum value ���� ��� exists, and the procedure
ends.

Case 3 If ���� �� � ��� � �� � � �� and ����� �
�
��� and ��� � 
, the motion vector that
gives the next minimum value ���� ��� does not
exist, and the procedure ends.

Case 4 Otherwise, let ���� ���� �, let the current
motion vector ��� �� � �� � �� � � ��, and let
���� ��� �	
�.

Step 3 Find the unknown ���� �� � � �� where �� � � �
���� � � � � for the current motion vector ��� ��.

Step 4 Let the current direction ��� �� be the value of ��� ��
that gives the minimum value of ��� � �� � � �� for
��� �� where �� � � � �, �� � � � �, ��� �� ��
��� ��, and ��� � �� � � �� � �
���, and return to
Step 2.

2.2.3 Algorithm Using Depth First Search

ALM using depth first search (hereinafter ALMD) can be
implemented by using a stack instead of the queue that is
used to store motion vectors waiting to be searched in the
ALMB procedure shown in 2.2.2.

Alternatively, ALMD can also be implemented by a sys-
tem of using recursive function calls, as shown below.

ALM where the depth first search is implemented by
means of recursive calls consists of the three procedures,
��� 	, ������ 	��� ��, and ������ ���� ��������� �� �� ��,
as shown below. The ������ ���� ��������� �� �� �� proce-
dure is the same as in 2.2.2.

��� �

Step 1 Let the current motion vector ��� �� � ��� ��, find
���� ��, and let the flag that indicates the motion vec-
tor belong to the search path ���� �� � �	
�. Let
the motion vector that gives the minimal matching er-
ror ���� ���� ��� ��.

Step 2 Perform ������ 	��� ��.

462



������ ��	
 ��

Step 1 Find the unknown ��� � �� � � �� for the current
motion vector ��� ��where�� � � � ���� � � � �.

Step 2 Let ���� ��� be the value of ��� �� that gives the �’th
smallest value of ���� �� � � �� where �� � � � �,
�� � � � �, ��� �� �� ��� ��, and ��� � �� � � �� �
�
���. Let the current search direction ���� ��� be
�� �.

Step 3 If � � 	, end. Otherwise, search for the vector
that gives the next minimum point by making use of
������ ���� ��������� �� ��� ���, and if the motion
vector that gives the next minimum point ���� ��� ex-
ists, perform ������ 	���� ���.

Step 4 Let �� �� �, and return to Step 3.

3. COMPUTATIONAL EXPERIMENTS

We next show using computational experiments that by avoid-
ing local solutions, the two types of ALM are able to pro-
duce smaller prediction errors compared to SDM as described
in 2.1 and are able to detect the motion vector under an ar-
bitrary upper limit on the number of computations. Further-
more, the effect that differences in the search order have on
the effectiveness of avoiding local solutions is shown.

3.1 Experimental conditions

In the experiments, the template block size was taken to be
��� �� pixels, the reference image of the search target was
taken to be the image of the previous frame, and the search
range was taken to be± 15 in both the horizontal and verti-
cal directions. Frame numbers 150 to 599 (excluding the ti-
tle frame) of the four types of SIF size evaluation sequences
shown in Fig. 3 [8] were used.

In the experiments, the same evaluation indicators as
used in [4] and [5] were used. That is, mean square error
(MSE) was used as an indicator for evaluating prediction
performance. Furthermore, ��� � ��� � � ��� ��� was used
as an indicator for evaluating the number of computations
where �� is the average number of reference blocks searched
per template block using this method, and �� is the average
number of reference blocks searched per template block in
FS.

3.2 Experimental Results

3.2.1 Effectiveness of Avoiding Local Solutions

Table 1 shows the values of MSE and CPX as the number of
search directions	 and number of gradient increase permit-
ted 
 is varied. The case of 	 � � and 
 � � is equivalent
to SDM.

As shown in the table, in all the evaluation sequences,
the value of MSE approached the value of MSE from FS
monotonically as the values of	 and
 were increased, and
it can be judged that both ALMD and ALMB were effective

in avoiding local solutions. Furthermore, although CPX in-
creases as 	 and 
 increase, even at 	 � � and 
 � �,
the value of CPX is less than 15%, and it is clear that the
number of computations is small compared to FS. Further-
more, although there was a trend for the value of MSE to
be slightly smaller and CPX to be slightly larger for ALMD
compared to ALMB, this difference is not considered to be
significant.

3.2.2 Motion detection performance under an upper limit
on the number of computations

Next, an upper limit on the number of computations per
template block MAXCPX was applied and the variations
in prediction performance were found as MAXCPX was
changed. MAXCPX refers to �
���� � ��� � �����
where � � �� � �� is the number of reference blocks
within the search domain of the template block and� is the
number of reference blocks that are permitted to be searched
per template block.

Figure 5 shows the value of MSE for ALMD, ALMB,
and FS as the upper limit on the number of computations
MAXCPX was varied. In ALMD and ALMB, the num-
ber of search directions 	 was taken to be 4 and the num-
ber of gradients increases permitted 
 is taken to be 4. In
FS, the search was cutoff midway according to MAXCPX
by performing searches in the spiral shaped order shown in
Fig. 4.

As shown in Fig. 5, the value of MSE decreased mono-
tonically in all the methods as MAXCPX was increased,
and tended to converge on the value of MSE for FS when
no upper limit is applied on the number of computations. In
addition, there was a tendency for the value of MSE to be
smaller for ALMB compared to ALMD when MAXCPX
was approximately 5 to 10%.

4. CONCLUSION

In this paper, two types of motion vector detection algo-
rithms using the steepest descent method that are effective in
avoiding local solutions were demonstrated using depth first
search and breadth first search. Furthermore, computer ex-
periments demonstrated that these two types of algorithms
were able to obtain prediction errors smaller than conven-
tional motion detection methods using the steepest descent
method, and were able to detect motion vectors under an ar-
bitrary limit on the number of computations. Furthermore,
these two algorithms did not exhibit large differences in the
effectiveness of avoiding local solutions. Issues for the fu-
ture are progressing with comparisons with other methods
and improving prediction performance under arbitrary lim-
its on the number of computations.

5. REFERENCES

[1] ISO/IEC 14496-2, “Information technology - Coding
of audio-visual objects - Part2 : Visual,” International
Standard, 1999.

463



Table 1: Dependence of MSE and CPX on 	 and 
.

(a) Woman with bird cage. (FS : MSE 59.5, CPX 100.0%)
C

0 1 2 3 4 5 6 7
MSE CPX MSE CPX MSE CPX MSE CPX MSE CPX MSE CPX MSE CPX MSE CPX

D

1
ALMD 74.1 1.5% 71.5 1.9% 70.2 2.4% 69.4 2.8% 68.8 3.2% 68.2 3.6% 67.7 4.0% 67.3 4.4%
ALMB 74.1 1.5% 71.5 1.9% 70.2 2.4% 69.4 2.8% 68.8 3.2% 68.2 3.6% 67.7 4.0% 67.3 4.4%

2
ALMD 71.8 1.7% 67.8 2.6% 66.0 3.5% 64.8 4.4% 63.9 5.4% 63.3 6.3% 63.0 7.1% 62.7 8.0%
ALMB 71.8 1.7% 67.6 2.7% 65.9 3.6% 64.8 4.5% 64.1 5.4% 63.6 6.3% 63.2 7.1% 63.0 7.8%

3
ALMD 70.5 1.9% 65.5 3.3% 63.8 4.4% 62.6 5.8% 61.8 7.1% 61.4 8.3% 61.2 9.4% 61.0 10.4%
ALMB 70.5 1.9% 65.5 3.4% 64.1 4.5% 63.2 5.7% 62.6 6.9% 62.3 7.9% 62.0 8.9% 61.8 9.8%

4
ALMD 69.5 2.1% 63.9 3.9% 62.3 5.2% 61.3 7.0% 60.7 8.5% 60.5 9.9% 60.3 11.2% 60.2 12.4%
ALMB 69.5 2.1% 64.0 4.0% 62.8 5.2% 62.1 6.6% 61.6 7.9% 61.2 9.1% 61.0 10.3% 60.8 11.3%

(b) Whale show. (FS : MSE 356.5, CPX 100.0%)
C

0 1 2 3 4 5 6 7
MSE CPX MSE CPX MSE CPX MSE CPX MSE CPX MSE CPX MSE CPX MSE CPX

D

1
ALMD 400.2 1.5% 391.3 1.9% 385.9 2.3% 383.1 2.7% 380.9 3.1% 379.0 3.5% 377.3 4.0% 376.1 4.4%
ALMB 400.2 1.5% 391.3 1.9% 385.9 2.3% 383.1 2.7% 380.9 3.1% 379.0 3.5% 377.3 4.0% 376.1 4.4%

2
ALMD 389.8 1.7% 374.6 2.6% 369.0 3.5% 366.0 4.4% 364.2 5.4% 363.0 6.3% 362.2 7.3% 361.6 8.1%
ALMB 389.8 1.7% 373.7 2.7% 369.1 3.6% 366.5 4.6% 364.8 5.4% 363.7 6.3% 363.0 7.2% 362.4 8.0%

3
ALMD 383.9 1.9% 368.5 3.3% 364.4 4.5% 362.4 5.9% 361.1 7.3% 360.3 8.6% 359.9 9.8% 359.5 10.9%
ALMB 383.9 1.9% 368.1 3.5% 364.7 4.7% 363.0 5.9% 362.1 7.1% 361.3 8.3% 360.8 9.4% 360.5 10.4%

4
ALMD 381.0 2.0% 365.4 4.0% 362.3 5.4% 360.8 7.3% 360.0 8.9% 359.5 10.5% 359.1 11.9% 358.8 13.2%
ALMB 381.0 2.0% 365.3 4.1% 362.8 5.5% 361.5 7.0% 360.7 8.4% 360.3 9.8% 359.8 11.0% 359.5 12.1%

(c) Soccer action. (FS : MSE 95.6, CPX 100.0%)
C

0 1 2 3 4 5 6 7
MSE CPX MSE CPX MSE CPX MSE CPX MSE CPX MSE CPX MSE CPX MSE CPX

D

1
ALMD 176.3 1.5% 160.3 1.9% 152.0 2.3% 146.7 2.8% 143.1 3.2% 140.3 3.6% 138.1 4.1% 136.2 4.5%
ALMB 176.3 1.5% 160.3 1.9% 152.0 2.3% 146.7 2.8% 143.1 3.2% 140.3 3.6% 138.1 4.1% 136.2 4.5%

2
ALMD 162.5 1.6% 134.8 2.7% 122.6 3.7% 114.7 4.7% 110.9 5.7% 108.0 6.8% 106.5 7.8% 105.4 8.8%
ALMB 162.5 1.6% 133.3 2.8% 122.0 3.8% 115.6 4.8% 111.6 5.8% 109.6 6.8% 108.7 7.8% 107.6 8.7%

3
ALMD 154.7 1.7% 124.6 3.5% 113.2 4.9% 106.6 6.4% 103.3 7.9% 101.5 9.3% 100.4 10.7% 100.0 11.9%
ALMB 154.7 1.7% 123.3 3.7% 113.6 5.1% 108.4 6.5% 105.7 7.9% 104.4 9.2% 103.5 10.5% 102.7 11.7%

4
ALMD 150.2 1.8% 117.0 4.2% 107.4 6.0% 101.8 7.9% 99.6 9.7% 98.7 11.4% 98.1 13.0% 97.7 14.4%
ALMB 150.2 1.8% 116.5 4.4% 108.5 6.1% 104.2 7.8% 102.0 9.4% 101.1 11.0% 100.2 12.4% 99.7 13.7%

(d) Marching in. (FS : MSE 195.1, CPX 100.0%)
C

0 1 2 3 4 5 6 7
MSE CPX MSE CPX MSE CPX MSE CPX MSE CPX MSE CPX MSE CPX MSE CPX

D

1
ALMD 196.2 1.0% 195.8 1.4% 195.6 1.9% 195.5 2.4% 195.5 2.8% 195.5 3.3% 195.4 3.8% 195.4 4.3%
ALMB 196.2 1.0% 195.8 1.4% 195.6 1.9% 195.5 2.4% 195.5 2.8% 195.5 3.3% 195.4 3.8% 195.4 4.3%

2
ALMD 196.2 1.0% 195.5 1.8% 195.3 2.7% 195.2 3.6% 195.2 4.6% 195.2 5.5% 195.2 6.4% 195.2 7.3%
ALMB 196.2 1.0% 195.5 1.9% 195.3 2.7% 195.2 3.6% 195.2 4.6% 195.2 5.5% 195.2 6.4% 195.2 7.3%

3
ALMD 196.2 1.0% 195.4 2.3% 195.3 3.3% 195.2 4.6% 195.2 6.0% 195.2 7.3% 195.2 8.5% 195.2 9.7%
ALMB 196.2 1.0% 195.4 2.3% 195.2 3.3% 195.2 4.7% 195.2 6.0% 195.2 7.3% 195.2 8.5% 195.2 9.7%

4
ALMD 196.2 1.0% 195.4 2.7% 195.2 3.9% 195.2 5.6% 195.2 7.3% 195.2 8.9% 195.2 10.3% 195.1 11.7%
ALMB 196.2 1.0% 195.4 2.8% 195.2 4.0% 195.2 5.6% 195.2 7.2% 195.2 8.8% 195.2 10.2% 195.1 11.6%

[2] ITU-T Recommendation H.263, “Video coding for
low bit rate communication,” 1998.

[3] T. Koga, K. Iinuma, A. Hirano, Y. Iijima and T.
Ishiguro, “Motion compensated interframe coding for
video conferencing,” Proc. National Telecommunica-
tion Conf., G.5.3, 1981.

[4] L. K. Liu and E. Feig, “A Block-Based Gradient De-
scent Search Algorithm for Block Motion Estimation
in Video Coding,” IEEE Trans. Circuits Syst. Video
Technol., vol. 6, no. 4, pp. 419–422, August 1996.

[5] O. T.-C. Chen, “Motion Estimation Using a One-
Dimensional Gradient Descent Search,” IEEE Trans.
Circuits Syst. Video Technol., vol. 10, no. 4, pp. 608–
616, June 2000.

[6] K. Imamura, Y. Nakanishi and H. Hashimoto, “Im-
provement of Local Minima Problem and Its Effec-
tiveness for Motion Vector Detection Using Steepest
Descent Method,” IPSJ Journal, vol. 45, No. 11, pp.
2528–2531, November 2004.

[7] T. Nagao, Optimization Algorithms, Shokodo, Tokyo,
2000.

[8] The Institute of Image Information and Television En-
gineers, Standard Test Sequences (SIF), NHK Engi-
neering Services, Inc., Tokyo, 2003.

464



(a)

(b)

(c)

(d)

Fig. 3: Evaluation sequences. (a) Woman with bird cage.
(b) Whale show. (c) Soccer action. (d) Marching in.

u

v

Fig. 4: Search order in FS.

0

50

100

150

200

250

300

0.0 5.0 10.0 15.0 20.0 25.0 30.0 

MS
E

MAXCPX [%]

FS
ALMD
ALMB

(a) Woman with bird cage.

0
100
200
300
400
500
600
700
800
900

0.0 5.0 10.0 15.0 20.0 25.0 30.0 

MS
E

MAXCPX [%]

FS
ALMD
ALMB

(b) Whale show.

0
50

100
150
200
250
300
350
400
450
500

0.0 5.0 10.0 15.0 20.0 25.0 30.0 

MS
E

MAXCPX [%]

FS
ALMD
ALMB

(c) Soccer action.

0

50

100

150

200

250

0.0 5.0 10.0 15.0 20.0 25.0 30.0 

MS
E

MAXCPX [%]

FS
ALMD
ALMB

(d) Marching in.

Fig. 5: Dependence of MSE on MAXCPX.

465




