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ABSTRACT

This paper presentsanew a gorithm that includesamech-
anism to avoid local solutions in a motion vector detection
method that uses the steepest descent method. Two differ-
ent implementations of the algorithm are demonstrated us-
ing two major search methods for tree structures, depth first
search and breadth first search. Furthermore, it is shown that
by avoiding local solutions, both of these implementations
are ableto obtain smaller prediction errors compared to con-
ventional motion vector detection methods using the steep-
est descent method, and are able to perform motion vector
detection within an arbitrary upper limit on the number of
computations. The effects that differences in the search or-
der have on the effectiveness of avoiding local solutionsare
also presented.

Keywords: motion vector detection, block matching, steep-
est descent method

1. INTRODUCTION

In many video encoding schemes, a motion compensation
prediction scheme[1], [2] is employed, and motion vectors
need to be detected during the encoding process. A variety
of motion vector detection methods have been proposed so
far, which can be divided into two classes : (1) full search
(FS) and (2) methods that aim to reduce the number of com-
putations (such asthree-step-search [ 3] and gradient descent
search [4]).

Although FS is able to achieve smaller prediction er-
rors, it requires a large number of computations as it in-
volves an exhaustive search throughout the search domain.
While the second class of methods do not perform an ex-
haustive search, they are susceptibleto falling into alocaly
optimal solution. A variety of methods [5], [6] have been
proposed recently for avoiding the local solution problem.
These methods are generally equipped with a mechanism
for setting theinitial search point in the vicinity of the opti-
mal solution in order to avoid local solutions.

In recent years, there has been a rapid increase in de-
vicesthat havefunctionsfor sending or recording video, and
the range of features demanded of motion vector detection
is becoming more and more diverse. One of the most sought
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after featuresisthereduction in prediction errors for agiven
fixed number of computations. Thisrequirement is based on
the following background.

In general, when motion vector detection isimplemented
in devices that operatein real time, the desired motion vec-
tor needs to be found within some constant time, regardless
of whether the method isimplemented at ahardware or soft-
ware level. In other words, the desired motion vector needs
to be found within a upper limit on the number of compu-
tations. This upper limit varies depending on the method
used for motion vector search and the required power con-
sumption of the target device. Therefore, methods that help
reduce the prediction error as much as possible within an
arbitrary upper limit on the number of computations are in
demand.

If we examine the above-mentioned classes in terms of
this demand, the first class uses a constant number of com-
putations and do not normally anticipate changein the num-
ber of computations (i.e., the process being cutoff midway).
Similarly, in the second class, the number of computations
required generally varies depending on theimage being pro-
cessed, and these methods are not intended to execute the
process within a fixed number of computations.

For this reason, the authors have proposed a new ago-
rithm (hereinafter ALM) that includes amechanism to avoid
local minimain amotion vector search method that usesthe
steepest descent method. ALM is able to avoid local solu-
tions without an additional procedure for setting the initial
search point in the vicinity of the optimal solution. Fur-
thermore, within an arbitrary upper limit on the number of
computations, ALM is able to perform motion vector detec-
tion, and is able to obtain prediction results close to FS if
the number of computationsis increased.

Because the search path in ALM forms a tree structure,
it can beimplemented using anumber of different search or-
ders. In this paper, two different implementations of ALM
are demonstrated using two major search methods for tree
structures, depth first search and breadth first search. Fur-
thermore, it is shown that by avoiding local solutions, both
of theseimplementations of ALM are able to obtain smaller
prediction errors compared to conventional motion search
methods using the steepest descent method, and are able to



perform motion vector search within an arbitrary upper limit
on the number of computations. The effectsthat differences
in the search order have on the effectiveness of avoiding lo-
cal solutions are also presented.

2. ALGORITHM

2.1 Motion Detection Algorithm Using the Steepest De-
scent Method

The steepest descent method [7] is a method for search-
ing for the minimum value of afunction by iteratively per-
forming the process of “setting the next search point to the
point formed by advancing by some distance in the direc-
tion where the gradient of the function decreases the most
from the current search point.”

If welet e(u, v) (hereinafter matching error) be the sum
of the absol ute errors between atemplate block in atemplate
image (the search source) and a reference block with a mo-
tion vector (u,v) in a reference image (the search target),
the motion vector can be found using the steepest descent
method as follows.

Step 1 Let the current motion vector (u,v) < (0,0) and
find e(u, v).

Step 2 Findtheunknowne(u+s,v+t), -1 <s <1,-1<
t < 1 for the current motion vector (u, v).

Step 3 Let (z,y) bethe value of (s, t) that gives the mini-
mumvalueof e(u+s,v+t)when—-1< s <1,-1<
t <land(s,t) # (0,0). Ife(u,v) > e(u+z,v+y),
let the current motion vector (u,v) < (u+ x,v + y)
and return to Step 2. Otherwise, et the motion vector
giving the minimum matching error (@, %) < (u,v)
and end the search.

2.2 Motion Detection Algorithm for Avoiding L ocal So-
[utions Using the Steepest Descent M ethod

2.2.1 Overview

The steepest descent method is a method that searches the
“valley floor” by advancing along the direction with the
largest decrease in gradient, and is known to be generally
susceptible to falling into local solutions. The proposed
method therefore begins searching the “valley floor” in mul-
tiple directions where the gradient is downwards. Once the
“valley floor” has been reached, the search then continues
along multiple “valleys’, searching for even lower “valley
floors”.

e Thesearchisperformed from the search starting point
in D directionswherethereductioningradient islarge,
i.e., the gradient is small. For these D directions, the
gradient is allowed to increase as long as it is within
the smaller D directions.

e The search for minimal pointsin D directionsis per-
formed by proceeding along the direction with the
minimum value of gradient, the same as the method
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Fig. 1: Outlines of search paths. (@) SDM. (b) ALM.

of steepest descent. If the direction of advancement
has a minimum value of gradient from among all the
directions, a direction where the gradient increases
is also allowable. However, during the process of
searching for the minimum point in the correspond-
ing direction, increases in the gradient shall be per-
mitted up to C' times, and if a new minimum point
that updates the minimum value is not found by then,
search in that direction is terminated.

Once a minimum point is found that updates the min-
imum value, the search for further minimum points
is performed from that point in D directions where
the gradient islow, the same as for the search starting
point.

Figure 1 showsoutlines of the search pathsin the method
shown in 2.1 (hereinafter SDM) and in ALM. The diagram
uses contour lines to display an outline of e(u,v), and the
arrowsin the diagram show the search path. Asshowninthe
diagram, the search path of ALM is atree structure. ALM
can therefore be implemented using different search orders
by using depth first search or breadth first search, etc., as
shownin2.2.3and 2.2.2. Figure 2 shows an overview of the
search order in depth first search and breadth first search.

2.2.2 Algorithm Using Breadth First Search

ALM using breadth first search (hereinafter ALMB) iscom-
posed of the three procedures: top B, target _B(u, v), and
search_nezxt_target(u,v, s, t) as shown below.



(b)

Fig. 2: Overview of search order. (a) Depth first search. (b)
Breadth first search.

top_B

Step 1 Let the current motion vector (u,v) < (0,0), find
e(u,v), and let the flag that represents belonging to
amotion vector search path p(u,v) < TRUE. Let
the motion vector that gives the minimum matching
error (4,9) « (u,v). Add (u,v) to the queue for
holding motion vectors waiting to be searched (here-
inafter search queue).

Step 2 Take the first motion vector (k, 1) from the search
queue, and perform target _B(k,1).

Step 3 If the search queue is empty, the search ends. Oth-
erwise, return to Step 2.

target_B(u,v)

Step 1 Find the unknown e(u + s,v + t) for the current
motion vector (u,v) where—1 < s<1,-1<t<1.

Step 2 Let (z;,y;) bethevalueof (s,t) that givesthe i'th
smallest value of e(u + s,v + t) where —1 < s <
1,-1<t<1,(s,t) # (0,0) and p(u + s,v + t)
FALSE. Let the current search direction (z;,y;) be
1+ 1.

Step 3 If i > D, end. Otherwise, search for the vector
that gives the next minimum point by making use of
search_next_target(u, v, x;,y;), and if the motion
vector that gives the next minimum point (u,7) ex-
ists, add that vector to the search queue.

Step 4 Leti < i + 1, and return to Step 3.

462

search_next_target(u,v,c,y)

Step 1 Let the number of increases in the gradient cnt <
00 and the minimum value updated flag renew <«
FALSE.

Step 2

Casel If e(u,v) > e(u + z,v + y), let the cur-
rent motion vector (u,v) « (u + z,v + y) and
p(u,v) < TRUE. If e(u,v) updates the min-
imum value, let renew < TRUE, let the mo-
tion vector that gives the next minimum value
(@,v) + (u,v), and let the vector that gives the
minimum matching error (@, 0) < (u,v).

Case?2 If e(u,v) < e(u + z,v + y) and renew =
TRUE, the motion vector that gives the next
minimum value (, v) exists, and the procedure
ends.

Case3 If e(u,v) < e(u + z,v + y) and renew =
FALSE and ¢nt = C, the motion vector that
gives the next minimum value (@, v) does not
exist, and the procedure ends.

Case4 Otherwise, let cnt < cnt + 1, let the current
motion vector (u,v) + (u + z,v + y), and let
p(u,v) < TRUE.

Step 3 Find the unknown e(u + s,v + t) where —1 < s <
1,—1 <t < 1 for the current motion vector (u, v).

Step 4 Let the current direction (z,y) bethe valueof (s, t)
that gives the minimum value of e(u + s,v + t) for
(u,v) where -1 < s < 1, -1 <t < 1, (s,t) #
(0,0), and p(u + s,v + t) = FALSE, and return to
Step 2.

2.2.3 Algorithm Using Depth First Search

ALM using depth first search (hereinafter ALMD) can be
implemented by using a stack instead of the queue that is
used to store motion vectors waiting to be searched in the
ALMB procedure shown in 2.2.2.

Alternatively, ALMD can also beimplemented by asys-
tem of using recursive function calls, as shown below.

ALM where the depth first search is implemented by
means of recursive calls consists of the three procedures,
top_D, target_D(u,v), and search_next_target(u, v, s, t),
as shown below. The search nezxt target(u,v, s, t) proce-
dureisthesameasin 2.2.2.

top_D

Step 1 Let the current motion vector (u,v) « (0,0), find
e(u,v), and let the flag that indicates the motion vec-
tor belong to the search path p(u,v) < TRUE. Let
the motion vector that gives the minimal matching er-
ror (@, 0) < (u,v).

Step 2 Perform target_D(u,v).



target_D(u,v)

Step 1 Find the unknown e(u + s,v + ¢) for the current
motion vector (u,v) where—1 < s <1,-1 <t <1.

Step 2 Let (z;,y;) bethevalueof (s,t) that givesthe i'th
smallest value of e(u + s,v + t) where —1 < s < 1,
-1 <t<1,(s,t)#(0,0),andp(u+s,v+t) =
FALSE. Let the current search direction (x;,y;) be
1+ 1.

Step 3 If i > D, end. Otherwise, search for the vector
that gives the next minimum point by making use of
search_next_target(u, v, x;,y;), and if the motion
vector that gives the next minimum point (@, o) ex-
ists, perform target_D (4, ).

Step 4 Leti < i + 1, and return to Step 3.

3. COMPUTATIONAL EXPERIMENTS

We next show using computational experimentsthat by avoid-
ing local solutions, the two types of ALM are able to pro-
ducesmaller prediction errors compared to SDM as described
in 2.1 and are able to detect the motion vector under an ar-
bitrary upper limit on the number of computations. Further-
more, the effect that differences in the search order have on
the effectiveness of avoiding local solutionsis shown.

3.1 Experimental conditions

In the experiments, the template block size was taken to be
16 x 16 pixels, the reference image of the search target was
taken to be the image of the previous frame, and the search
rangewastakento be+ 15 in both the horizontal and verti-
cal directions. Frame numbers 150 to 599 (excluding the ti-
tleframe) of the four types of SIF size evaluation sequences
shown in Fig. 3 [8] were used.

In the experiments, the same evaluation indicators as
used in [4] and [5] were used. That is, mean square error
(MSE) was used as an indicator for evaluating prediction
performance. Furthermore, CPX = 100- (N /M) was used
as an indicator for evaluating the number of computations
where N isthe average number of reference bl ocks searched
per template block using this method, and M isthe average
number of reference blocks searched per template block in
FS.

3.2 Experimental Results
3.2.1 Effectiveness of Avoiding Local Solutions

Table 1 shows the values of MSE and CPX as the number of
search directions D and number of gradient increase permit-
ted C isvaried. Thecaseof D = 1 and C = 0 isequivalent
to SDM.

As shown in the table, in all the evaluation sequences,
the value of MSE approached the value of MSE from FS
monotonically asthevaues of D and C' wereincreased, and
it can bejudged that both ALMD and ALMB were effective
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in avoiding local solutions. Furthermore, although CPX in-
creasesas D and Cincrease, evenat D = 4and C = 7,
the value of CPX is less than 15%, and it is clear that the
number of computations is small compared to FS. Further-
more, although there was a trend for the value of MSE to
be dightly smaller and CPX to be slightly larger for ALMD
compared to ALMB, this difference is not considered to be
significant.

3.2.2 Motion detection performance under an upper limit
on the number of computations

Next, an upper limit on the number of computations per
template block MAXCPX was applied and the variations
in prediction performance were found as MAXCPX was
changed. MAXCPX refersto MAXCPX = 100 - (N/M)
where M = 31 x 31 is the number of reference blocks
within the search domain of the template block and IV isthe
number of reference blocksthat are permitted to be searched
per template block.

Figure 5 shows the value of MSE for ALMD, ALMB,
and FS as the upper limit on the number of computations
MAXCPX was varied. In ALMD and ALMB, the num-
ber of search directions D was taken to be 4 and the num-
ber of gradients increases permitted C' istakento be 4. In
FS, the search was cutoff midway according to MAXCPX
by performing searches in the spiral shaped order shown in
Fig. 4.

Asshown in Fig. 5, the value of M SE decreased mono-
tonicaly in all the methods as MAXCPX was increased,
and tended to converge on the value of MSE for FS when
no upper limit is applied on the number of computations. In
addition, there was a tendency for the value of MSE to be
smaller for ALMB compared to ALMD when MAXCPX
was approximately 5 to 10%.

4. CONCLUSION

In this paper, two types of motion vector detection algo-
rithmsusing the steepest descent method that are effectivein
avoiding local solutions were demonstrated using depth first
search and breadth first search. Furthermore, computer ex-
periments demonstrated that these two types of algorithms
were able to obtain prediction errors smaller than conven-
tional motion detection methods using the steepest descent
method, and were able to detect motion vectors under an ar-
bitrary limit on the number of computations. Furthermore,
these two algorithms did not exhibit large differencesin the
effectiveness of avoiding local solutions. Issues for the fu-
ture are progressing with comparisons with other methods
and improving prediction performance under arbitrary lim-
its on the number of computations.
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Fig. 3: Evaluation sequences. (a) Woman with bird cage.
(b) Whale show. (c) Soccer action. (d) Marching in.
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Fig. 4: Search order in FS.
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Fig. 5: Dependence of MSE on MAXCPX.





