• 제목/요약/키워드: local linear smoothing

Search Result 17, Processing Time 0.018 seconds

On a Transformation Technique for Nonparametric Regression

  • Kim, Woochul;Park, Byeong U.
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.2
    • /
    • pp.217-233
    • /
    • 1996
  • This paper gives a rigorous proof of an asymptotic result about bias and variance for a transformation-based nonparametric regression estimator proposed by Park et al (1995).

  • PDF

NONPARAMETRIC DISCONTINUITY POINT ESTIMATION IN GENERALIZED LINEAR MODEL

  • Huh, Jib
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.1
    • /
    • pp.59-78
    • /
    • 2004
  • A regression function in generalized linear model may have a discontinuity/change point at unknown location. In order to estimate the location of the discontinuity point and its jump size, the strategy is to use a nonparametric approach based on one-sided kernel weighted local-likelihood functions. Weak convergences of the proposed estimators are established. The finite-sample performances of the proposed estimators with practical aspects are illustrated by simulated examples.

Robust Nonparametric Regression Method using Rank Transformation

    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.2
    • /
    • pp.574-574
    • /
    • 2000
  • Consider the problem of estimating regression function from a set of data which is contaminated by a long-tailed error distribution. The linear smoother is a kind of a local weighted average of response, so it is not robust against outliers. The kernel M-smoother and the lowess attain robustness against outliers by down-weighting outliers. However, the kernel M-smoother and the lowess requires the iteration for computing the robustness weights, and as Wang and Scott(1994) pointed out, the requirement of iteration is not a desirable property. In this article, we propose the robust nonparametic regression method which does not require the iteration. Robustness can be achieved not only by down-weighting outliers but also by transforming outliers. The rank transformation is a simple procedure where the data are replaced by their corresponding ranks. Iman and Conover(1979) showed the fact that the rank transformation is a robust and powerful procedure in the linear regression. In this paper, we show that we can also use the rank transformation to nonparametric regression to achieve the robustness.

Robust Nonparametric Regression Method using Rank Transformation

  • Park, Dongryeon
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.2
    • /
    • pp.575-583
    • /
    • 2000
  • Consider the problem of estimating regression function from a set of data which is contaminated by a long-tailed error distribution. The linear smoother is a kind of a local weighted average of response, so it is not robust against outliers. The kernel M-smoother and the lowess attain robustness against outliers by down-weighting outliers. However, the kernel M-smoother and the lowess requires the iteration for computing the robustness weights, and as Wang and Scott(1994) pointed out, the requirement of iteration is not a desirable property. In this article, we propose the robust nonparametic regression method which does not require the iteration. Robustness can be achieved not only by down-weighting outliers but also by transforming outliers. The rank transformation is a simple procedure where the data are replaced by their corresponding ranks. Iman and Conover(1979) showed the fact that the rank transformation is a robust and powerful procedure in the linear regression. In this paper, we show that we can also use the rank transformation to nonparametric regression to achieve the robustness.

  • PDF

Number of sampling leaves for reflectance measurement of Chinese cabbage and kale

  • Chung, Sun-Ok;Ngo, Viet-Duc;Kabir, Md. Shaha Nur;Hong, Soon-Jung;Park, Sang-Un;Kim, Sun-Ju;Park, Jong-Tae
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.3
    • /
    • pp.169-175
    • /
    • 2014
  • Objective of this study was to investigate effects of pre-processing method and number of sampling leaves on stability of the reflectance measurement for Chinese cabbage and kale leaves. Chinese cabbage and kale were transplanted and cultivated in a plant factory. Leaf samples of the kale and cabbage were collected at 4 weeks after transplanting of the seedlings. Spectra data were collected with an UV/VIS/NIR spectrometer in the wavelength region from 190 to 1130 nm. All leaves (mature and young leaves) were measured on 9 and 12 points in the blade part in the upper area for kale and cabbage leaves, respectively. To reduce the spectral noise, the raw spectral data were preprocessed by different methods: i) moving average, ii) Savitzky-Golay filter, iii) local regression using weighted linear least squares and a $1^{st}$ degree polynomial model (lowess), iv) local regression using weighted linear least squares and a $2^{nd}$ degree polynomial model (loess), v) a robust version of 'lowess', vi) a robust version of 'loess', with 7, 11, 15 smoothing points. Effects of number of sampling leaves were investigated by reflectance difference (RD) and cross-correlation (CC) methods. Results indicated that the contribution of the spectral data collected at 4 sampling leaves were good for both of the crops for reflectance measurement that does not change stability of measurement much. Furthermore, moving average method with 11 smoothing points was believed to provide reliable pre-processed data for further analysis.

A Baseline Correction for Effective Analysis of Alzheimer’s Disease based on Raman Spectra from Platelet (혈소판 라만 스펙트럼의 효율적인 분석을 위한 기준선 보정 방법)

  • Park, Aa-Ron;Baek, Sung-June
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.1
    • /
    • pp.16-22
    • /
    • 2012
  • In this paper, we proposed a method of baseline correction for analysis of Raman spectra of platelets from Alzheimer's disease (AD) transgenic mice. Measured Raman spectra include the meaningful information and unnecessary noise which is composed of baseline and additive noise. The Raman spectrum is divided into the local region including several peaks and the spectrum of the region is modeled by curve fitting using Gaussian model. The additive noise is clearly removed from the process of replacing the original spectrum with the fitted model. The baseline correction after interpolating the local minima of the fitted model with linear, piecewise cubic Hermite and cubic spline algorithm. The baseline corrected models extract the feature with principal component analysis (PCA). The classification result of support vector machine (SVM) and maximum $a$ posteriori probability (MAP) using linear interpolation method showed the good performance about overall number of principal components, especially SVM gave the best performance which is about 97.3% true classification average rate in case of piecewise cubic Hermite algorithm and 5 principal components. In addition, it confirmed that the proposed baseline correction method compared with the previous research result could be effectively applied in the analysis of the Raman spectra of platelet.

Epidemiological application of the cycle threshold value of RT-PCR for estimating infection period in cases of SARS-CoV-2

  • Soonjong Bae;Jong-Myon Bae
    • Journal of Medicine and Life Science
    • /
    • v.20 no.3
    • /
    • pp.107-114
    • /
    • 2023
  • Epidemiological control of coronavirus disease 2019 (COVID-19) is needed to estimate the infection period of confirmed cases and identify potential cases. The present study, targeting confirmed cases for which the time of COVID-19 symptom onset was disclosed, aimed to investigate the relationship between intervals (day) from symptom onset to testing the cycle threshold (CT) values of real-time reverse transcription-polymerase chain reaction. Of the COVID-19 confirmed cases, those for which the date of suspected symptom onset in the epidemiological investigation was specifically disclosed were included in this study. Interval was defined as the number of days from symptom onset (as disclosed by the patient) to specimen collection for testing. A locally weighted regression smoothing (LOWESS) curve was applied, with intervals as explanatory variables and CT values (CTR for RdRp gene and CTE for E gene) as outcome variables. After finding its non-linear relationship, a polynomial regression model was applied to estimate the 95% confidence interval values of CTR and CTE by interval. The application of LOWESS in 331 patients identified a U-shaped curve relationship between the CTR and CTE values according to the number of interval days, and both CTR and CTE satisfied the quadratic model for interval days. Active application of these results to epidemiological investigations would minimize the chance of failing to identify individuals who are in contact with COVID-19 confirmed cases, thereby reducing the potential transmission of the virus to local communities.