• Title/Summary/Keyword: local linear method

Search Result 420, Processing Time 0.028 seconds

Tone Mapping Method using Non-linear Dynamic Range Normalization for High Dynamic Range Images (HDR 영상을 위한 비선형 동적영역 정규화를 이용한 톤 매핑 기법)

  • Kim, Beom-Yong;Hwang, Bo-Hyun;Yun, Jong-Ho;Choi, Myung-Ryul
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.851-852
    • /
    • 2008
  • In this paper, we propose a tone mapping method using Non-linear Dynamic Range Normalization (NDRN) for High Dynamic Range (HDR) images. HDR images are not suitable for commercial display devices because dynamic range of HDR images do not match with one of Low Dynamic Range (LDR) display devices. To reproduce a tone of HDR images for LDR displays, tone mapping methods have been proposed such as local and global tone mapping. We introduce NDRN to locate mean of HDR images at the center of LDR. NDRN preserves the details for highlight and shadow. By suppressing the significant luminance change in tone mapping, naturalness of original image can be also preserved. The experimental results show that the proposed method preserves details and naturalness of original images.

  • PDF

Non linear seismic response of a low reinforced concrete structure : modeling by multilayered finite shell elements

  • Semblat, J.F.;Aouameur, A.;Ulm, F.J.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.2
    • /
    • pp.211-229
    • /
    • 2004
  • The main purpose of this paper is the numerical analysis of the non-linear seismic response of a RC building mock-up. The mock-up is subjected to different synthetic horizontal seismic excitations. The numerical approach is based on a 3D-model involving multilayered shell elements. These elements are composed of several single-layer membranes with various eccentricities. Bending effects are included through these eccentricities. Basic equations are first written for a single membrane element with its own eccentricity and then generalised to the multilayered shell element by superposition. The multilayered shell is considered as a classical shell element : all information about non-linear constitutive relations are investigated at the local scale of each layer, whereas balance and kinematics are checked afterwards at global scale. The non-linear dynamic response of the building is computed with Newmark algorithm. The numerical dynamic results (blind simulations) are considered in the linear and non linear cases and compared with experimental results from shaking table tests. Multilayered shell elements are found to be a promising tool for predictive computations of RC structures behaviour under 3D seismic loadings. This study was part of the CAMUS International Benchmark.

COMPOUNDED METHOD FOR LAND COVERING CLASSIFICATION BASED ON MULTI-RESOLUTION SATELLITE DATA

  • HE WENJU;QIN HUA;SUN WEIDONG
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.116-119
    • /
    • 2005
  • As to the synthetical estimation of land covering parameters or the compounded land covering classification for multi-resolution satellite data, former researches mainly adopted linear or nonlinear regression models to describe the regression relationship of land covering parameters caused by the degradation of spatial resolution, in order to improve the retrieval accuracy of global land covering parameters based on 1;he lower resolution satellite data. However, these methods can't authentically represent the complementary characteristics of spatial resolutions among different satellite data at arithmetic level. To resolve the problem above, a new compounded land covering classification method at arithmetic level for multi-resolution satellite data is proposed in this .paper. Firstly, on the basis of unsupervised clustering analysis of the higher resolution satellite data, the likelihood distribution scatterplot of each cover type is obtained according to multiple-to-single spatial correspondence between the higher and lower resolution satellite data in some local test regions, then Parzen window approach is adopted to derive the real likelihood functions from the scatterplots, and finally the likelihood functions are extended from the local test regions to the full covering area of the lower resolution satellite data and the global covering area of the lower resolution satellite is classified under the maximum likelihood rule. Some experimental results indicate that this proposed compounded method can improve the classification accuracy of large-scale lower resolution satellite data with the support of some local-area higher resolution satellite data.

  • PDF

A Study on the Measurement Technique for Local Regression rate of Solid fuel in Hybrid rocket (하이브리드 로켓 연료의 국부 후퇴율 측정기법에 관한 연구)

  • Cho, Jung-Tae;Kim, Gi-Hun;Woo, Kyoung-Jin;Kim, Soo-Jong;Lee, Jung-Pyo;Kim, Hak-Chul;Sung, Hong-Gye;Moon, Hee-Jang;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.243-246
    • /
    • 2009
  • The axial local regression rate of solid fuel of hybrid rocket is one of important parameter for a design and performance. Steeping method is simple and measure a corrcet regression rate of axial direction not being relevant to a shape of fuel and physical characteristics. In this study, the problem of other measuring equipment was improved and this linear steeping method is provide higher accuracy than the other.

  • PDF

A comparison of three performance-based seismic design methods for plane steel braced frames

  • Kalapodis, Nicos A.;Papagiannopoulos, George A.;Beskos, Dimitri E.
    • Earthquakes and Structures
    • /
    • v.18 no.1
    • /
    • pp.27-44
    • /
    • 2020
  • This work presents a comparison of three performance-based seismic design methods (PBSD) as applied to plane steel frames having eccentric braces (EBFs) and buckling restrained braces (BRBFs). The first method uses equivalent modal damping ratios (ξk), referring to an equivalent multi-degree-of-freedom (MDOF) linear system, which retains the mass, the elastic stiffness and responds in the same way as the original non-linear MDOF system. The second method employs modal strength reduction factors (${\bar{q}}_k$) resulting from the corresponding modal damping ratios. Contrary to the behavior factors of code based design methods, both ξk and ${\bar{q}}_k$ account for the first few modes of significance and incorporate target deformation metrics like inter-storey drift ratio (IDR) and local ductility as well as structural characteristics like structural natural period, and soil types. Explicit empirical expressions of ξk and ${\bar{q}}_k$, recently presented by the present authors elsewhere, are also provided here for reasons of completeness and easy reference. The third method, developed here by the authors, is based on a hybrid force/displacement (HFD) seismic design scheme, since it combines the force-base design (FBD) method with the displacement-based design (DBD) method. According to this method, seismic design is accomplished by using a behavior factor (qh), empirically expressed in terms of the global ductility of the frame, which takes into account both non-structural and structural deformation metrics. These expressions for qh are obtained through extensive parametric studies involving non-linear dynamic analysis (NLDA) of 98 frames, subjected to 100 far-fault ground motions that correspond to four soil types of Eurocode 8. Furthermore, these factors can be used in conjunction with an elastic acceleration design spectrum for seismic design purposes. Finally, a comparison among the above three seismic design methods and the Eurocode 8 method is conducted with the aid of non-linear dynamic analyses via representative numerical examples, involving plane steel EBFs and BRBFs.

Discontinuous log-variance function estimation with log-residuals adjusted by an estimator of jump size (점프크기추정량에 의한 수정된 로그잔차를 이용한 불연속 로그분산함수의 추정)

  • Hong, Hyeseon;Huh, Jib
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.2
    • /
    • pp.259-269
    • /
    • 2017
  • Due to the nonnegativity of variance, most of nonparametric estimations of discontinuous variance function have used the Nadaraya-Watson estimation with residuals. By the modification of Chen et al. (2009) and Yu and Jones (2004), Huh (2014, 2016a) proposed the estimators of the log-variance function instead of the variance function using the local linear estimator which has no boundary effect. Huh (2016b) estimated the variance function using the adjusted squared residuals by the estimated jump size in the discontinuous variance function. In this paper, we propose an estimator of the discontinuous log-variance function using the local linear estimator with the adjusted log-squared residuals by the estimated jump size of log-variance function like Huh (2016b). The numerical work demonstrates the performance of the proposed method with simulated and real examples.

Smoke Detection System Research using Fully Connected Method based on Adaboost

  • Lee, Yeunghak;Kim, Taesun;Shim, Jaechang
    • Journal of Multimedia Information System
    • /
    • v.4 no.2
    • /
    • pp.79-82
    • /
    • 2017
  • Smoke and fire have different shapes and colours. This article suggests a fully connected system which is used two features using Adaboost algorithm for constructing a strong classifier as linear combination. We calculate the local histogram feature by gradient and bin, local binary pattern value, and projection vectors for each cell. According to the histogram magnitude, this paper applied adapted weighting value to improve the recognition rate. To preserve the local region and shape feature which has edge intensity, this paper processed the normalization sequence. For the extracted features, this paper Adaboost algorithm which makes strong classification to classify the objects. Our smoke detection system based on the proposed approach leads to higher detection accuracy than other system.

An Anomaly Detection Algorithm for Cathode Voltage of Aluminum Electrolytic Cell

  • Cao, Danyang;Ma, Yanhong;Duan, Lina
    • Journal of Information Processing Systems
    • /
    • v.15 no.6
    • /
    • pp.1392-1405
    • /
    • 2019
  • The cathode voltage of aluminum electrolytic cell is relatively stable under normal conditions and fluctuates greatly when it has an anomaly. In order to detect the abnormal range of cathode voltage, an anomaly detection algorithm based on sliding window was proposed. The algorithm combines the time series segmentation linear representation method and the k-nearest neighbor local anomaly detection algorithm, which is more efficient than the direct detection of the original sequence. The algorithm first segments the cathode voltage time series, then calculates the length, the slope, and the mean of each line segment pattern, and maps them into a set of spatial objects. And then the local anomaly detection algorithm is used to detect abnormal patterns according to the local anomaly factor and the pattern length. The experimental results showed that the algorithm can effectively detect the abnormal range of cathode voltage.

New method for LQG control of singularly perturbed discrete stochastic systems

  • Lim, Myo-Taeg;Kwon, Sung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.432-435
    • /
    • 1995
  • In this paper a new approach to obtain the solution of the linear-quadratic Gaussian control problem for singularly perturbed discrete-time stochastic systems is proposed. The alogorithm proposed is based on exploring the previous results that the exact solution of the global discrete algebraic Riccati equations is found in terms of the reduced-order pure-slow and pure-fast nonsymmetric continuous-time algebraic Riccati equations and, in addition, the optimal global Kalman filter is decomposed into pure-slow and pure-fast local optimal filters both driven by the system measurements and the system optimal control input. It is shown that the optimal linear-quadratic Gaussian control problem for singularly perturbed linear discrete systems takes the complete decomposition and parallelism between pure-slow and pure-fast filters and controllers.

  • PDF

Structural Design of Medium Scale Composite Wind Turbine Blade

  • Kong, Chang-Duk;Kim, Jong-Sik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.92-102
    • /
    • 2000
  • In this study, the 750kW medium scale composite blade for the horizontal axis wind turbine system was designed and manufactured, and it was tested and evaluated by the specific structural test rig. In the test, it was found that local bucklings at the trailing edge of the blade and excessive deflections at the blade tip were happened. In order to solve these problems, the design of blade structure was modified. After improving the design, the abrupt change of deflection at the blade tip was reduced by smooth variation of the spar thickness and the local buckling was removed by extending the web length. The modified design was analyzed by the FEM, the safety and stability of the blade structure. And Fatigue life over 20 years was confirmed by using S-N linear damage method, Spera's method, etc.

  • PDF