• 제목/요약/키워드: local flow cell

검색결과 81건 처리시간 0.027초

대퇴골 동맥 모델내에 카테터 삽입시 유량 및 압력 변화 측정 (Measurements of Flow Rate and Pressure Changes in Femoral Artery Model during Catheterization)

  • 김중경;박찬영;정찬일;장준근;한동철;유정열;민병구
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1996년도 추계학술대회
    • /
    • pp.7-10
    • /
    • 1996
  • The purpose of this experimental investigation is to examine the influence of the catheter on local pressure changes and flow rate in an arterial branch model similar to the femoral artery of man. Effects of branch to main lumen flow rate ratios and the locations of catheter tip were found to be significant on the local pressure changes. Relatively large pressure drops due to obstruction effects may induce endothelial cell damage, which have been reported to be the primary cause of the initiation of the atherosclerosis.

  • PDF

곡관부를 가지는 내부 냉각유로에서 회전수 변화에 따른 열전달 및 유동 특성 (II) - 평행한 요철배열 덕트 - (Effects of Rotation Speed on Heat Transfer and Flow in a Coolant Passage with Turning Region (II) - Parallel Ribbed Duct -)

  • 김경민;김윤영;이동현;조형희
    • 대한기계학회논문집B
    • /
    • 제29권8호
    • /
    • pp.911-920
    • /
    • 2005
  • The present study investigates heat/mass transfer and flow characteristics in a ribbed rotating passage with turning region. The duct has an aspect ratio (W/H) of 0.5 and a hydraulic diameter ($D_h$) of 26.67 mm. Rib turbulators are attached in the parallel arrangement on the leading and trailing surfaces of the passage. The ribs have a rectangular cross section of 2 m (e) $\times$ 3 m (w) and an attack angle of $70^{\circ}$. The pitch-to-rib height ratio (p/e) is 7.5, and the rib height-to-hydraulic diameter ratio (e/$D_h$) is 0.075. The rotation number ranges from 0.0 to 0.20 while the Reynolds number is constant at 10,000. To verify the heat/mass transfer augmentation, internal flow structures are calculated for the same conditions using a commercial code FLUENT 6.1. The results show that a pair of vortex cells are generated due to the symmetric geometry of the rib arrangement, and heat/mass transfer is augmented up to $Sh/Sh_0=2.9$ averagely, which is higher than that of the cross-ribbed case presented in the previous study for the stationary case. With the passage rotation, the main flow in the first-pass deflects toward the trailing surface and the heat transfer is enhanced on the trailing surface. In the second-pass, the flow enlarges the vortex cell close to the leading surface, and the small vortex cell on the trailing surface side contracts to disappear as the passage rotates faster. At the highest rotation number ($R_O=0.20$), the turn-induced single vortex cell becomes identical regardless of the rib configuration so that similar local heat/mass transfer distributions are observed in the fuming region for the cross- and parallel-ribbed case.

Three Predictive Tests Using Mice for the Identification of Contact Sensitizer

  • Jung-Hyun Shin;Min
    • 대한화장품학회지
    • /
    • 제22권2호
    • /
    • pp.201-210
    • /
    • 1996
  • Predictive tests for the identification of contact sensitizing chemicals have been developed. We measured the sensitization potential with three predictive tests, the in vitro and the in vivo Local Lymph Node Assay(LLNA), ELISA to detect interferon-gamma(IFN-${\gamma}$) from supernatant and flow cytometry to detect change of cell surface proteins, using draining lymph nodes of mice. BALB/c mice were exposed to various chemicals or vehicles on the ears daily for 3 consecutive days in all experiments. With some exceptions of propyl paraben, neomycin sulfate, the in vivo LLNA was able to detect the sensitizing capacity of test chemicals and was more sensitive than the in vitro LLNA for chemicals used in the present study. In another experiment, contact sensitivity was assessed by the ELISA to detect IFN-Υ from the supernatants of the cultured LNCs after sensitization with chemicals. There was a good correlation between the LLNA and the IFN-Υ production for test chemicals. We also examined the change of cell surface proteins on LNCs after sensitization by flow cytometry for some cell adhesion molecules(ICAM-1, E-cadherine, B7 molecule), T cell markers(CD3, CD4, CD8, T$\alpha$$\beta$,T${\gamma}$$\delta$) and B cell markers(LR1, CD45R, I-Ad). The number of ICAM-1 positive cells and B cells in LNCs were increased after sensitization with DNCB, TNCB, isoeugenol and 25%, 50% cinnamic aldehyde compared with that of vehicle as a control. In conclusion, the in vivo LLNA could provide more sensitive screening test for moderate to strong sensitizers and some weak sensitizers including cosmetic raw materials than the in vitro LLNA. The production of IFN-Υ by allergen-activated LNCs might be a values indicators without radioisotopes for the identification of contact allergens. Detection of allergens by testing the increase of ICAM-1 positive cells and B cells in LNCs by flow cytometry might be used as a test method to detect allergens.

  • PDF

적응적 분할격자 기반 2차원 침수해석모형 K-Flood의 개발 (Development of 2D inundation model based on adaptive cut cell mesh (K-Flood))

  • 안현욱;정안철;김연수;노준우
    • 한국수자원학회논문집
    • /
    • 제51권10호
    • /
    • pp.853-862
    • /
    • 2018
  • 본 연구에서는 적응적 분할격자기반 2차원 침수해석모형 K-Flood를 개발하였다. 분할격자기법은 흐름 특성을 기반으로 격자를 분할하여 흐름영역과 비흐름영역으로 구분하는 격자생성기법이며, 분할격자기법과 격자세분화기법을 동시에 활용하면 매우 적은 수의 격자로 복잡한 형상의 흐름영역을 표현할 수 있어 효율적인 모의가 가능하다. 특히 최근 도시홍수에 대해 매우 정밀한 해상도의 자료와 격자를 이용하여 보다 정확한 침수해석 또는 예보를 하고자 하는 시도가 늘어나고 있으며, K-Flood는 이러한 복잡한 흐름영역의 계산 시 적응적 분할격자를 활용하여 효율적인 격자생성이 가능하다. 공간 및 시간에 대해 2차 정확도의 유한체적 수치해법이 적용되었다. K-Flood의 검증을 위해 2차원 침수해석모형의 검증에 널리 사용되고 있는 1) 원형 실린더에 의한 충격파 반사 모의, 2) 도시홍수실험 모의, 3) Malpasset 댐붕괴 모의를 수행하였다. 모든 모의에서 관측자료 및 과거의 모의결과와 비교하여 성공적으로 K-Flood의 성능을 검증하였다.

기체확산층의 유동투과율과 채널 형상 변화에 따른 고분자 전해질 연료전지 성능변화 수치연구 (Numerical study on PEM fuel cell performance with variation of GDL permeability and channel geometry)

  • 고수곤;손상호;남진현;김찬중
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3114-3119
    • /
    • 2008
  • Relatively high convective flow exists in the under-rib regions of a gas diffusion layer (GDL) when serpentine flow fields are employed in a PEMFC. This under-rib convection is believed to be favorable for the performance of PEMFCs, by enabling more effective use of catalysts in the under-rib regions. From the fact that the under-rib convection in a GDL is directly proportional to the permeability of the GDL, computational fluid dynamics (CFD) simulations were performed to discover the relationship between the GDL permeability and the PEMFC performance. Single-, triple-, and quintuple-path parallel serpentine flow fields for $9\;cm^2$ active cell area were considered while changing the GDL permeability from $1{\times}10^{-12}$ to $5{\times}10^{-11}m^2$. The results showed that higher GDL permeability generally resulted in better performance of PEMFCs, but the degree of performance enhancement became smaller as the parallel path number increased. The effects of the permeability on the local variables were also discussed.

  • PDF

입구 가습량이 고분자 전해질 연료전지의 성능에 미치는 영향에 대한 CFD 해석연구 (Computational fluid dynamics analysis on the effect of inlet humidity for the performance of PEMFC with serpentine flow-fields)

  • 오규환;이규진;남진현;김찬중
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2828-2833
    • /
    • 2008
  • Water management is one of many operating parameters, which influences the performance and stability of a proton exchange membrane fuel cell (PEMFC). Local humidity condition including liquid water saturation has profound impacts on the distributions of overpotentials, current density, and membrane water content. Computational fluid dynamics simulations were conducted to investigate the effect of the inlet humidity variation on the performance of a PEMFC of $9\;cm^2$ active cell area with serpentine flow fields. The results showed that the performance of the simulated PEMFC remained at an almost same level when the cathode inlet humidity was changed from 100% to 60%, while reaching its maximum at air humidity of 80%. However, further decrease in the cathode inlet humidity below 40% started to significantly deteriorate the performance of the PEMFC. The variations of overpotentials, membrane water content, etc. due to the change in the cathode inlet humidity were also discussed.

  • PDF

Reynolds 수에 따른 꺾어진 덕트에서 열/물질전달 특성 고찰 (Effects of Reynolds Number on Flow and Heat/Mass Characteristics Inside the Wavy Duct)

  • 장인혁;황상동;조형희
    • 설비공학논문집
    • /
    • 제15권10호
    • /
    • pp.809-820
    • /
    • 2003
  • The present study investigates effects of flow velocity on the convective heat/mass transfer characteristics in wavy ducts of a primary surface heat exchanger application. Local heat/mass transfer coefficients on the wavy duct sidewall are determined by using a naphthalene sublimation technique. The flow visualization technique is used to understand the overall flow structures inside the duct. The aspect ratio and corrugation angle of the wavy duct is fixed at 7.3 and 145$^{\circ}$ respectively, and the Reynolds numbers, based on the duct hydraulic diameter, vary from 100 to 5,000. The results show that there exist complex secondary flows and transfer processes resulting in non-uniform distributions of the heat/mass transfer coefficients on the duct side walls. At low Re (Re<1000), relatively high heat/mass transfer regions like cell shape appear on both pressure and suction side wall due to the secondary vortex flows called Taylor-Gortler vortices perpendicular to the main flow direction. However, at high Re (Re>1000), these secondary flow cells disappear and boundary layer type flow characteristics are observed on pressure side wall and high heat/mass transfer region by the flow reattachment appears on the suction side wall. The average heat/mass transfer coefficients are higher than those of the smooth circular duct due to the secondary flows inside wavy duct. And also friction factors are about two times greater than those of the smooth circular duct.

PREDICTION OF FREE SURFACE FLOW ON CONTAINMENT FLOOR USING A SHALLOW WATER EQUATION SOLVER

  • Bang, Young-Seok;Lee, Gil-Soo;Huh, Byung-Gil;Oh, Deog-Yeon;Woo, Sweng-Woong
    • Nuclear Engineering and Technology
    • /
    • 제41권8호
    • /
    • pp.1045-1052
    • /
    • 2009
  • A calculation model is developed to predict the transient free surface flow on the containment floor following a loss-of-coolant accident (LOCA) of pressurized water reactors (PWR) for the use of debris transport evaluation. The model solves the two-dimensional Shallow Water Equation (SWE) using a finite volume method (FVM) with unstructured triangular meshes. The numerical scheme is based on a fully explicit predictor-corrector method to achieve a fast-running capability and numerical accuracy. The Harten-Lax-van Leer (HLL) scheme is used to reserve a shock-capturing capability in determining the convective flux term at the cell interface where the dry-to-wet changing proceeds. An experiment simulating a sudden break of a water reservoir with L-shape open channel is calculated for validation of the present model. It is shown that the present model agrees well with the experiment data, thus it can be justified for the free surface flow with accuracy. From the calculation of flow field over the simplified containment floor of APR1400, the important phenomena of free surface flow including propagations and interactions of waves generated by local water level distribution and reflection with a solid wall are found and the transient flow rates entering the Holdup Volume Tank (HVT) are obtained within a practical computational resource.

전기화학반응을 포함한 3차원 열$\cdot$유동해석을 통한 용융탄산염 연료전지의 단위 전지 성능해석 (Prediction of MCFC Unit Cell Performance Using 3-D Heat & Fluid Analysis with Electrochemical Reaction)

  • 김영록;최도형
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 추계 학술대회논문집
    • /
    • pp.141-144
    • /
    • 2004
  • An analysis procedure for the MCFC channel flow has been developed to predict the fuel cell performance. The channel formed by the uniformly distributed trapezoidal supports is approximated by the porous medium that yields the equivalent pressure drop. The Wavier-Stokes, energy, and species equations are solved to obtain the velocity, temperature and concentration fields for a local current density which is computed from electrochemical correlations. The fuel cell characteristics, such as the temperature, pressure, mole concentration, voltage and current density distributions, are presented and discussed.

  • PDF

고분자전해질 연료전지의 환원극 블록과 공기 유량 영향에 대한 전산 해석 연구 (A Numerical Study of Cathode Block and Air Flow Rate Effect on PEMFC Performance)

  • 조성훈;김준범
    • 공업화학
    • /
    • 제33권1호
    • /
    • pp.96-102
    • /
    • 2022
  • 고분자전해질막 연료전지의 반응물인 수소와 산소는 기체 상태이므로, 반응물이 원활히 전달될수록 작동 전압의 손실을 줄일 수 있다. 높은 전류밀도 영역에서 산소 물질 전달이 전압 손실을 좌우하므로, 환원극 유로의 형상 변경에 대한 연구들이 진행되어 왔다. 환원극 유로 형상 중에서 유로를 막는 블록은 반응물을 다공성 매질인 기체확산층으로 강제 대류 하도록 사용되었다. 본 연구에서는 간단한 단 채널의 연료전지 모델에 블록을 배치하였다. 전산 유체역학을 사용하였고, 공기 공급 유량을 달리하였을 때 블록으로 인한 강제 대류 효과가 전압-전류 곡선과 국부 전류 밀도에 대한 영향을 연구하였다. 기체확산층으로의 강제 대류 현상을 통하여 적은 공기 공급 유량으로도 높은 전류 밀도를 얻을 수 있었다. 다수의 블록을 직렬로 배치한 경우에 1개의 블록만 배치한 것보다 강제 대류 효과를 증가시켜 높은 전류밀도를 얻을 수 있었다.