Browse > Article
http://dx.doi.org/10.3741/JKWRA.2018.51.10.853

Development of 2D inundation model based on adaptive cut cell mesh (K-Flood)  

An, Hyunuk (Local Environmental Engineering Department, Chungnam National University)
Jeong, Anchul (International Water Resources Research Institute, Chungnam National University)
Kim, Yeonsu (Water Resources Research Center, K-water Convergence Institute)
Noh, Joonwoo (Water Resources Research Center, K-water Convergence Institute)
Publication Information
Journal of Korea Water Resources Association / v.51, no.10, 2018 , pp. 853-862 More about this Journal
Abstract
An adaptive cut-cell grid based 2D inundation analysis model, K-Flood, is developed in this study. Cut cell grid method divides a grid into a flow area and a non-flow area depending the characteristics of the flows. With adaptive mesh refinement technique cut cell method can represent complex flow area using relatively small number of cells. In recent years, the urban inundation modeling using high resolution and fine quality data is increasing to achieve more accurate flood analysis or flood forecasting. K-Flood has potential to simulate such complex urban inundation using efficient grid generation technique. A finite volume numerical scheme of second order accuracy for space and time was applied. For verification of K-Flood, 1) shockwave reflex simulation by circular cylinder, 2) urban flood experiment simulation, 3) Malpasset dam collapse simulation are performed and the results are compared with observed data and previous simulation results.
Keywords
Inundation model; Cut cell mesh; Adaptive mesh; Finite volume model;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 An, H., and Yu, S. (2011). "Numerical simulation of urban flash flood experiments using adaptive mesh refinement and cut cell method." Journal of Korea Water Resources Association, Vol. 44, No. 7, pp. 511-522 (in Korean).   DOI
2 An, H., and Yu, S. (2012). "Well-balanced shallow water flow simulation on quadtree cut cell grids." Advances in Water Resources, Vol. 39, pp. 60-70.   DOI
3 An, H., Yu, S., Lee, G., and Kim, Y. (2015). "Analysis of an open source quadtree grid shallow water flow solver for flood simulation." Quaternary International, Vol. 384, pp. 118-128.   DOI
4 Audusse, E., Bouchut, F., Bristeau, M. O., Klein, R., and Perthame, B. (2004). "A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows." SIAM Journal on Scientific Computing, Vol. 25, No. 6, pp. 2050-2065.   DOI
5 Testa, G., Zuccala, D., Alcrudo, F., Mulet, J., and Soares Frazao, S. (2007). "Flash flood flow experiment in a simplified urban district." Journal of Hydraulic Research, Vol. 45, pp. 37-44.   DOI
6 Toro, E. F. (2001). "Shock-capturing methods for free-surface shallow flow." John Wiley & Sons, New York.
7 Valiani, A., Caleffi, V., and Zanni, A. (2002). "Case study: Malpasset dam-break simulation using a two-dimensional finite volume method." Journal of Hydraulic Engineering, Vol. 128, No. 5, pp. 460-472.   DOI
8 Yang, J. Y., Liu, Y., and Lomax, H. (1987). "Computation of shock wave reflection by circular cylinders." AIAA Journal, Vol. 25, No. 5, pp. 683-689.   DOI
9 Zhou, J. G., Causon, D. M., Mingham, C. G., and Ingram, D. M. (2001). "The surface gradient method for the treatment of source terms in the shallow water equations." Journal of Computational Physics, Vol. 168, No. 1, pp. 1-25.   DOI
10 Begnudelli, L., and Sanders, F. (2006). "Unstructured grid finitevolume algorithm for shallow water flow and scalar transport with wetting and drying." Journal of Hydraulic Engineering, Vol. 132, No. 4, pp. 371-384.   DOI
11 Benkhaldoun, F., Elmahi, I., and Seaid, M. (2007). "Well-balanced finite volume schemes for pollutant transport by shallow water equations on unstructured meshes." Journal of Computational Physics, Vol. 226, No. 1, pp. 180-203.   DOI
12 Brufau, P., Garcia-Navarro, P., and Vazquez-Cendon, M. E. (2004). "Zero mass error using unsteady wetting-drying conditions in shallow flows over dry irregular topography." International Journal for Numerical Methods in Fluids, Vol. 45, No. 10, pp. 1047-1082.   DOI
13 Caleffi, V., Valiani, A., and Bernini, A. (2007). "High-order balanced CWENO scheme for movable bed shallow water equations." Advances in Water Resources, Vol. 30, No. 4, pp. 730-741.   DOI
14 Causon, D. M., Ingram, D. M., and Mingham, C. (2001). "A cartesian cut cell method for shallow water flows with moving boundaries." Advances in Water Resources, Vol. 24, No. 8, pp. 899-911.   DOI
15 Causon, D. M., Ingram, D. M., Mingham, C. G., Yang, G., and Pearson, R. V. (2000). "Calculation of shallow water flows using a Cartesian cut cell approach." Advances in Water Resources, Vol. 23, No. 5, pp. 545-562.   DOI
16 Gallardo, J. M., Pares, C., and Castro, M. (2007). "On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas." Journal of Computational Physics, Vol. 227, No. 1, pp. 574-601.   DOI
17 Harten, A., Lan, P. D., and Van Leer, B. (1983). "On upstream differencing and Godunov-type schemes for hyperbolic conservation laws." SIAM Review, Vol. 25, No. 1, pp. 35-61.   DOI
18 Jablonowski, C., and Williamson, D. L. (2006). "A baroclinic instability test case for atmospheric model dynamical cores." Quarterly Journal of the Royal Meteorological Society, Vol. 132, No. 621C, pp. 2943-2975.   DOI
19 Hervouet, J. M. (2000). "A high-resolution 2-D Dam-break model using parallelization." Hydrological Processes, Vol. 14, No. 13, pp. 2211-2230.   DOI
20 Huang, W., Cao, Z., Pender, G., Liu, Q., and Carling, P. (2015). "Coupled flood and sediment transport modelling with adaptive mesh refinement." Science China Technological Sciences, Vol. 58, No. 8, pp. 1425-1438.   DOI
21 Kesserwani, G., and Liang, Q. (2012). "Dynamically adaptive grid based discontinuous Galerkin shallow water model." Advances in Water Resources, Vol. 37, pp. 23-39.   DOI
22 Kim, H., and Cho, Y. (2011). "Numerical model for flood routing with a Cartesian cut-cell domain." Journal of Hydraulic Research, Vol. 49, No. 2, 205-212.   DOI
23 Kim, H., Kim, J., and Cho, Y. (2009). "Numerical analysis of dambreak flow in an experimental channel using cut-cell method." KSCE Journal of Civil Engineering, Vol. 29, pp. 121-129.
24 Lee, S., Noh, S., Jang, C., and Rhee, D. (2017). "Simulation and analysis of urban inundation using the integrated 1D-2D urban flood model." Journal of Korea Water Resources Association, Vol. 50, No. 4, pp. 263-275. (in Korean)   DOI
25 Garcia-Navarro, P., and Vazquez-Cendon, E. (2000). "On numerical treatment of the source terms in shallow water equations." Computers & Fluids, Vol. 25, No. 8, pp. 951-979.
26 Liang, Q., and Borthwick, A. G. L. (2009). "Adapive quadtree simulation of shallow flows with wet-dry fronts over complex topography." Computers & Fluids, Vol. 38, No. 2, pp. 221-234.   DOI
27 Popinet, S. (2011). "Quadtree-adaptive tsunami modelling." Ocean Dynamics, Vol. 61, No. 9, pp. 1261-1285.   DOI
28 Liang, Q., and Marche, F. (2009). "Numerical resolution of wellbalanced shallow water equations with complex source terms." Advances in Water Resources, Vol. 32, No. 6, pp. 873-884.   DOI
29 Liang, Q., Zang, J., Borthwick, A. G. L., and Taylor, P. H. (2007). "Shallow flow simulation on dynamically adaptive cut cell quadtree grids." International Journal for Numerical Methods in Fluids, Vol. 53, No. 12, pp. 1777-1799.   DOI
30 Noh, S., Lee, J., Lee, S., Kawaike, K., and Seo, D. (2018). "Hyperresolution 1D-2D urban flood modelling using LiDAR data and hybrid parallelization." Environmental Modelling & Software, Vol. 103, pp. 131-145.   DOI
31 Quirk, J. J. (1994). "An alternative to unstructed grids for computing gas dynamic flows around arbitrarily complex two-dimensional bodies." Journal of Computers and Fluids, Vol. 23, No. 1, pp. 125-142.   DOI
32 Rogers, B. D., Borthwick, A. G. L., and Taylor, P. H. (2003). "Mathematical balancing of flux gradient and source terms prior to using Roe's approximate Riemann solver." Journal of Computational Physics, Vol. 192, No. 2, pp. 422-451.   DOI
33 Seo, I. W., Kim, J. S., and Jung, S. H. (2016). "Numerical simulation of two-dimensional pollutant mixing in rivers using RAMS." Procedia Engineering, Vol. 154, pp. 544-549.   DOI
34 Sussman, M. (2005). "A parallelized, adaptive algorithm for multiphase flows in general geometries." Computers and Structures, Vol. 83, No. 6-7, pp. 435-444.   DOI
35 Teng, J., Jakeman, A. J., Vaze, J., Croke, B. F. W., Dutta, D., and Kim, S. (2017). "Flood inundation modelling: A review of methods, recent advances and uncertainty analysis." Environmental Modelling & Software, Vol. 90, pp. 201-216.   DOI