• Title/Summary/Keyword: local feature

Search Result 939, Processing Time 0.023 seconds

Secure Biometric Hashing by Random Fusion of Global and Local Features

  • Ou, Yang;Rhee, Kyung-Hyune
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.6
    • /
    • pp.875-883
    • /
    • 2010
  • In this paper, we present a secure biometric hashing scheme for face recognition by random fusion of global and local features. The Fourier-Mellin transform and Radon transform are adopted respectively to form specialized representation of global and local features, due to their invariance to geometric operations. The final biometric hash is securely generated by random weighting sum of both feature sets. A fourfold key is involved in our algorithm to ensure the security and privacy of biometric templates. The proposed biometric hash can be revocable and replaced by using a new key. Moreover, the attacker cannot obtain any information about the original biometric template without knowing the secret key. The experimental results confirm that our scheme has a satisfactory accuracy performance in terms of EER.

Haptic Contour Following and Feature Detection with a Contact Location Display (접촉점 표시를 통한 윤곽선 추적 및 돌기 형상 탐지)

  • Park, Jaeyoung;Provancher, William R.;Johnson, David E.;Tan, Hong Z.
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.3
    • /
    • pp.206-216
    • /
    • 2013
  • We investigate the role of contact location information on the perception of local features during contour following in a virtual environment. An absolute identification experiment is conducted under force-alone and force-plus-contact-location conditions to investigate the effect of the contact location information. The results show that the participants identify the local features significantly better in terms of higher information transfer for the force-plus-contact-location condition, while no significant difference was found for measures of the efficacy of contour following between the two conditions. Further data analyses indicate that the improved identification of local features with contact location information is due to the improved identification of small surface features.

Smoke Detection System Research using Fully Connected Method based on Adaboost

  • Lee, Yeunghak;Kim, Taesun;Shim, Jaechang
    • Journal of Multimedia Information System
    • /
    • v.4 no.2
    • /
    • pp.79-82
    • /
    • 2017
  • Smoke and fire have different shapes and colours. This article suggests a fully connected system which is used two features using Adaboost algorithm for constructing a strong classifier as linear combination. We calculate the local histogram feature by gradient and bin, local binary pattern value, and projection vectors for each cell. According to the histogram magnitude, this paper applied adapted weighting value to improve the recognition rate. To preserve the local region and shape feature which has edge intensity, this paper processed the normalization sequence. For the extracted features, this paper Adaboost algorithm which makes strong classification to classify the objects. Our smoke detection system based on the proposed approach leads to higher detection accuracy than other system.

A Study on Gesture Recognition using Improved Higher Order Local Correlation Features and HMM (개선된 고차상관 특징계수와 은닉마르코프 모델을 이용한 제스처 인식에 관한 연구)

  • Kim, Jong-Min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.521-524
    • /
    • 2013
  • In this paper, the algorithm that recognizes the gesture by configuring the feature information obtained through Improved Higher Order Local Correlation Features as low dimensional gesture symbol was described. Since the proposed method doesn't require a lot of computations compared to the existing geometric feature based method or appearance based methods and it can maintain high recognition rate by using the minimum information, it is very well suited for real-time system establishment.

  • PDF

IPv6 Multicast Packet Transmission over IEEE 802.16 Networks (IEEE 802.16 망에서의 IPv6 멀티캐스트 패킷 전송 방법)

  • Jeong, Sang-Jin;Shin, Myung-Ki;Kim, Hyoung-Jun
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.235-236
    • /
    • 2006
  • IEEE 802.16 networks support mobile stations (MSs) to access broadband wireless networks while moving at a vehicular speed. However, IEEE 802.16 networks do not provide link layer native multicast capability because of point-to-multipoint connection characteristic. Due to this feature, it is not easy to adopt protocols or applications which need native link layer multicast capability. In order to solve the multicast support problem, we use the built-in LAN emulation feature of IEEE 802.16 which is based on Convergence Sublayer (CS). Our proposed operational procedures support not only the delivery of link local scope multicast packets, but also the delivery of non-link local scope multicast packets such as site local or global scope multicast packets. We also present the method of forming multicast Connection Identifier (CID) which is used to transport IP packets over IEEE 802.16 networks.

  • PDF

STK Feature Tracking Using BMA for Fast Feature Displacement Convergence (빠른 피쳐변위수렴을 위한 BMA을 이용한 STK 피쳐 추적)

  • Jin, Kyung-Chan;Cho, Jin-Ho
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.8
    • /
    • pp.81-87
    • /
    • 1999
  • In general, feature detection and tracking algorithms is classified by EBGM using Garbor-jet, NNC-R and STK algorithm using pixel eigenvalue. In those algorithms, EBGM and NCC-R detect features with feature model, but STK algorithm has a characteristics of an automatic feature selection. In this paper, to solve the initial problem of NR tracking in STK algorithm, we detected features using STK algorithm in modelled feature region and tracked features with NR method. In tracking, to improve the tracking accuracy for features by NR method, we proposed BMA-NR method. We evaluated that BMA-NR method was superior to NBMA-NR in that feature tracking accuracy, since BMA-NR method was able to solve the local minimum problem due to search window size of NR.

  • PDF

Rotation-Invariant Texture Classification Using Gabor Wavelet (Gabor 웨이블릿을 이용한 회전 변화에 무관한 질감 분류 기법)

  • Kim, Won-Hee;Yin, Qingbo;Moon, Kwang-Seok;Kim, Jong-Nam
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.9
    • /
    • pp.1125-1134
    • /
    • 2007
  • In this paper, we propose a new approach for rotation invariant texture classification based on Gabor wavelet. Conventional methods have the low correct classification rate in large texture database. In our proposed method, we define two feature groups which are the global feature vector and the local feature matrix. The feature groups are output of Gabor wavelet filtering. By using the feature groups, we defined an improved discriminant and obtained high classification rates of large texture database in the experiments. From spectrum symmetry of texture images, the number of test times were reduced nearly 50%. Consequently, the correct classification rate is improved with $2.3%{\sim}15.6%$ values in 112 Brodatz texture class, which may vary according to comparison methods.

  • PDF

Vehicle Detection and Classification Using Textural Similarity in Wavelet Domain (웨이브렛 영역에서의 질감 유사성을 이용한 차량검지 및 차종분류)

  • 임채환;박종선;이창섭;김남철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.6B
    • /
    • pp.1191-1202
    • /
    • 1999
  • We propose an efficient vehicle detection and classification algorithm for an electronic toll collection using the feature which is robust to abrupt intensity change between consecutive frames. The local correlation coefficient between wavelet transformed input and reference images is used as such a feature, which takes advantage of textural similarity. The usefulness of the proposed feature is analyzed qualitatively by comparing the feature with the local variance of a difference image, and is verified by measuring the improvements in the separability of vehicle from shadowy or shadowless road for a real test image. Experimental results from field tests show that the proposed vehicle detection and classification algorithm performs well even under abrupt intensity change due to the characteristics of sensor and occurrence of shadow.

  • PDF

A Novel Approach of Feature Extraction for Analog Circuit Fault Diagnosis Based on WPD-LLE-CSA

  • Wang, Yuehai;Ma, Yuying;Cui, Shiming;Yan, Yongzheng
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2485-2492
    • /
    • 2018
  • The rapid development of large-scale integrated circuits has brought great challenges to the circuit testing and diagnosis, and due to the lack of exact fault models, inaccurate analog components tolerance, and some nonlinear factors, the analog circuit fault diagnosis is still regarded as an extremely difficult problem. To cope with the problem that it's difficult to extract fault features effectively from masses of original data of the nonlinear continuous analog circuit output signal, a novel approach of feature extraction and dimension reduction for analog circuit fault diagnosis based on wavelet packet decomposition, local linear embedding algorithm, and clone selection algorithm (WPD-LLE-CSA) is proposed. The proposed method can identify faulty components in complicated analog circuits with a high accuracy above 99%. Compared with the existing feature extraction methods, the proposed method can significantly reduce the quantity of features with less time spent under the premise of maintaining a high level of diagnosing rate, and also the ratio of dimensionality reduction was discussed. Several groups of experiments are conducted to demonstrate the efficiency of the proposed method.

Robust Features and Accurate Inliers Detection Framework: Application to Stereo Ego-motion Estimation

  • MIN, Haigen;ZHAO, Xiangmo;XU, Zhigang;ZHANG, Licheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.302-320
    • /
    • 2017
  • In this paper, an innovative robust feature detection and matching strategy for visual odometry based on stereo image sequence is proposed. First, a sparse multiscale 2D local invariant feature detection and description algorithm AKAZE is adopted to extract the interest points. A robust feature matching strategy is introduced to match AKAZE descriptors. In order to remove the outliers which are mismatched features or on dynamic objects, an improved random sample consensus outlier rejection scheme is presented. Thus the proposed method can be applied to dynamic environment. Then, geometric constraints are incorporated into the motion estimation without time-consuming 3-dimensional scene reconstruction. Last, an iterated sigma point Kalman Filter is adopted to refine the motion results. The presented ego-motion scheme is applied to benchmark datasets and compared with state-of-the-art approaches with data captured on campus in a considerably cluttered environment, where the superiorities are proved.