• Title/Summary/Keyword: local error control

Search Result 140, Processing Time 0.024 seconds

The NURBS Human Body Modeling Using Local Knot Removal

  • Jo, Joon-Woo;Han, Sung-Soo
    • Fibers and Polymers
    • /
    • v.6 no.4
    • /
    • pp.348-354
    • /
    • 2005
  • These days consumers' various demands are accelerating research on apparel manufacturing system including automatic measurement, pattern generation, and clothing simulation. Accordingly, methods of reconstructing human body from point-clouds measured using a three dimensional scanning device are required for apparel CAD system to support these functions. In particular, we present in this study a human body reconstruction method focused on two issues, which are the decision of the number of control point for each sectional curve with error bound and the local knot removal for reducing the unusual concentration of control points. The approximation of sectional curves with error bounds as an approximation criterion leads all sectional curves to their own particular shapes apart from the number of control points. In addition, the application of the local knot removal to construction of human body sectional curves reduces the unusual concentration of control points effectively. The results may be used to produce an apparel CAD system as an automatic pattern generation system and a clothing simulation system through the low level control of NUBS or NURBS.

A Location Technique Based On Calibrated Radio Frequency Propagation Model For Wireless Local Area Networks (교정된 전파전파 모델에 기반한 WLAN 측위 기법)

  • Kim, Hee-Sung;Shim, Ju-Young;Choi, Wan-Sik;Lee, Hyung-Keun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.760-766
    • /
    • 2008
  • This paper proposes an efficient location technique to find an indoor location under the IEEE 802.11 wireless local area networks. The proposed method is based on the range measurements obtained from a simple radio frequency propagation model. Thus, unlike the radio frequency fingerprint correlation method, it does not suffer from the computational burden during the real-time location service period and can quickly reply the location requests of many users at the same time. To increase the location accuracy in spite of the frequent non-line-of-sight error occurrences, the proposed method calibrates the distortion of the non-line-of-sight error by a simple measurement surveying procedure that does not require the surveyor's manual interaction. Experimental results show the capability of the proposed method.

Composite adaptive neural network controller for nonlinear systems (비선형 시스템제어를 위한 복합적응 신경회로망)

  • 김효규;오세영;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.14-19
    • /
    • 1993
  • In this paper, we proposed an indirect learning and direct adaptive control schemes using neural networks, i.e., composite adaptive neural control, for a class of continuous nonlinear systems. With the indirect learning method, the neural network learns the nonlinear basis of the system inverse dynamics by a modified backpropagation learning rule. The basis spans the local vector space of inverse dynamics with the direct adaptation method when the indirect learning result is within a prescribed error tolerance, as such this method is closely related to the adaptive control methods. Also hash addressing technique, similar to the CMAC functional architecture, is introduced for partitioning network hidden nodes according to the system states, so global neuro control properties can be organized by the local ones. For uniform stability, the sliding mode control is introduced when the neural network has not sufficiently learned the system dynamics. With proper assumptions on the controlled system, global stability and tracking error convergence proof can be given. The performance of the proposed control scheme is demonstrated with the simulation results of a nonlinear system.

  • PDF

Nonlinear System Control using Neural Networks (신경 회로망을 이용한 비선형 계통의 제어)

  • Lee, Kee-Sang;Park, Tae-Geon;Lim, Jae-Hyung;Lee, Jung-Dong
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.356-358
    • /
    • 1994
  • In this paper, to alleviate the effect of approximation error and discontinuous variation of the controller parameters, the variable structure control scheme using neural networks is presented. In the proposed method, the variable structure control rules for each local linear models are designed to reject the effect of linearization error caused by linearization of the nonlinear system. And neural network infer approximate controller gains from combination of local linear control gains. The proposed control methods can be used to control nonlinear systems and it has robust characteristic against system parameter variations and external disturbances.

  • PDF

Determination of Local Vortical in Celestial Navigation Systems (천측 항법 시스템의 수직 방향 결정)

  • Suk, Byong-Suk;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.72-78
    • /
    • 2007
  • Determination of the local vertical is not trivial for a moving vehicle and in general will require corrections for the Earth geophysical deflection. The vehicle's local vertical can be estimated by INS integration with initial alignment in SDINS(Strap Down INS) system. In general, the INS has drift error and it cause the performance degradation. In order to compensate the drift error, GPS/INS augmented system is widely used. And in the event that GPS is denied or unavailable, celestial navigation using star tracker can be a backup navigation system especially for the military purpose. In this celestial navigation system, the vehicle's position determination can be achieved using more than two star trackers, and the accuracy of position highly depends on accuracy of local vertical direction. Modern tilt sensors or accelerometers are sensitive to the direction of gravity to arc second(or better) precision. The local gravity provides the direction orthogonal to the geoid and, appropriately corrected, toward the center of the Earth. In this paper the relationship between direction of center of the Earth and actual gravity direction caused by geophysical deflection was analyzed by using precision orbit simulation program embedded the JGM-3 geoid model. And the result was verified and evaluated with mathematical gravity vector model derived from gravitational potential of the Earth. And also for application purpose, the performance variation of pure INS navigation system was analyzed by applying precise gravity model.

Performance Analysis of ECTP Error Control Mechanism (ECTP 오류복구 성능평가)

  • 박주영;고석주;강신각
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.605-609
    • /
    • 2002
  • Reliable multicast data transmission in a 1:N environment needs more sophisticated error control mechanism than that of in 1:1 environment due to ACK implosion and duplicated retransmission. Although there have been many related research on error control in reliable multicast, real implemented protocols are rare. As one of the reliable multicast transport protocols, ECTP is selected as an international standard reliable multicast protocol by ITU-T and ISO and implemented on RedHat 7.2 machine by us. In this paper, we evaluate the performance of the error control mechanism in the respect of throughput and generated control packet numbers with a real implementation code. From the results, it is concluded that the suitable values of error control parameters can be obtained from the local group size and network environments.

  • PDF

Development of Local Driving System for Flat LED Lamp Using Ultrasonic Sensors Array (초음파 센서 배열을 이용한 LED 면광원 부분점등 시스템 개발)

  • Yoo, Sung-Ho;Lee, Jeong-Hun;Ryeom, Jeong-Duk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.12
    • /
    • pp.67-73
    • /
    • 2011
  • A method obtaining position data(x, y) of object accurately is proposed by using a pair of ultrasonic sensors composed of one transmitter and two receivers. And the driving system which controls the light of flat LED lamp locally using array of ultrasonic sensors (3 transmitters and 6 receivers) is developed. As a result, measured values of y are relatively reliable due to its small average of absolute errors of 1.03[cm]. The measured values of x have average error of 8.52[cm], and it is a large value. However, the average error is decreased by 0.65[cm] after applying algorithm for error correction. The experiments to control the light of flat LED lamp locally with algorithm for error correction are carried out. From the result, measured values of x with average error of 0.97[cm] are obtained and they are very good approximations of actual values.

Searching a global optimum by stochastic perturbation in error back-propagation algorithm (오류 역전파 학습에서 확률적 가중치 교란에 의한 전역적 최적해의 탐색)

  • 김삼근;민창우;김명원
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.3
    • /
    • pp.79-89
    • /
    • 1998
  • The Error Back-Propagation(EBP) algorithm is widely applied to train a multi-layer perceptron, which is a neural network model frequently used to solve complex problems such as pattern recognition, adaptive control, and global optimization. However, the EBP is basically a gradient descent method, which may get stuck in a local minimum, leading to failure in finding the globally optimal solution. Moreover, a multi-layer perceptron suffers from locking a systematic determination of the network structure appropriate for a given problem. It is usually the case to determine the number of hidden nodes by trial and error. In this paper, we propose a new algorithm to efficiently train a multi-layer perceptron. OUr algorithm uses stochastic perturbation in the weight space to effectively escape from local minima in multi-layer perceptron learning. Stochastic perturbation probabilistically re-initializes weights associated with hidden nodes to escape a local minimum if the probabilistically re-initializes weights associated with hidden nodes to escape a local minimum if the EGP learning gets stuck to it. Addition of new hidden nodes also can be viewed asa special case of stochastic perturbation. Using stochastic perturbation we can solve the local minima problem and the network structure design in a unified way. The results of our experiments with several benchmark test problems including theparity problem, the two-spirals problem, andthe credit-screening data show that our algorithm is very efficient.

  • PDF

The Error Diffusion Halftoning Using Local Adaptive Sharpening Control (국부 적응 샤프닝 조절을 사용한 오차확산 해프토닝)

  • 곽내정;양운모;윤태승;안재형
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.4
    • /
    • pp.87-92
    • /
    • 2004
  • Digital halftoning is to quantize a grayscale image to binary image. The error diffusion halftoning generates high quality bilevel image. But that also has some defects such as warms effect, sharpening and etc. To reduce these defects, Kite proposed the modified threshold modulation that has a parameter to control sharpening. Nevertheless some degradation left near edges with large luminance change. In this paver, we propose a method to control the parameter in proportional to local edge magnitude. The results of computer simulation show more reductions of the sharpening in the halftone image. Especially there are great improvement of quality near edges with large luminance change.

An edge-based smoothed finite element method for adaptive analysis

  • Chen, L.;Zhang, J.;Zeng, K.Y.;Jiao, P.G.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.6
    • /
    • pp.767-793
    • /
    • 2011
  • An efficient edge-based smoothed finite element method (ES-FEM) has been recently developed for solving solid mechanics problems. The ES-FEM uses triangular elements that can be generated easily for complicated domains. In this paper, the complexity study of the ES-FEM based on triangular elements is conducted in detail, which confirms the ES-FEM produces higher computational efficiency compared to the FEM. Therefore, the ES-FEM offers an excellent platform for adaptive analysis, and this paper presents an efficient adaptive procedure based on the ES-FEM. A smoothing domain based energy (SDE) error estimate is first devised making use of the features of the ES-FEM. The present error estimate differs from the conventional approaches and evaluates error based on smoothing domains used in the ES-FEM. A local refinement technique based on the Delaunay algorithm is then implemented to achieve high efficiency in the mesh refinement. In this refinement technique, each node is assigned a scaling factor to control the local nodal density, and refinement of the neighborhood of a node is accomplished simply by adjusting its scaling factor. Intensive numerical studies, including an actual engineering problem of an automobile part, show that the proposed adaptive procedure is effective and efficient in producing solutions of desired accuracy.