• Title/Summary/Keyword: local damage

Search Result 1,096, Processing Time 0.031 seconds

Towards robust viscoelastic-plastic-damage material model with different hardenings/softenings capable of representing salient phenomena in seismic loading applications

  • Jehel, Pierre;Davenne, Luc;Ibrahimbegovic, Adnan;Leger, Pierre
    • Computers and Concrete
    • /
    • v.7 no.4
    • /
    • pp.365-386
    • /
    • 2010
  • This paper presents the physical formulation of a 1D material model suitable for seismic applications. It is written within the framework of thermodynamics with internal variables that is, especially, very efficient for the phenomenological representation of material behaviors at macroscale: those of the representative elementary volume. The model can reproduce the main characteristics observed for concrete, that is nonsymetric loading rate-dependent (viscoelasticity) behavior with appearance of permanent deformations and local hysteresis (continuum plasticity), stiffness degradation (continuum damage), cracking due to displacement localization (discrete plasticity or damage). The parameters have a clear physical meaning and can thus be easily identified. Although this point is not detailed in the paper, this material model is developed to be implemented in a finite element computer program. Therefore, for the benefit of the robustness of the numerical implementation, (i) linear state equations (no local iteration required) are defined whenever possible and (ii) the conditions in which the presented model can enter the generalized standard materials class - whose elements benefit from good global and local stability properties - are clearly established. To illustrate the capabilities of this model - among them for Earthquake Engineering applications - results of some numerical applications are presented.

Estimation of the Fatigue Damage for an Ice-going Vessel under Broken Ice Condition Part II - Simplified Approach (유빙 하중을 받는 내빙 선박의 피로손상도 추정 Part II - 간이 해석법)

  • Kim, Jeong-Hwan;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.3
    • /
    • pp.231-241
    • /
    • 2019
  • In this study, a simplified analysis method was developed to evaluate the fatigue damage of an ice-going ship under broken ice condition. The global ice load, which is essentially calculated at the design stage of the Arctic vessel, and the hull form information were used to estimate the local ice load acting on the outer-shell of the ship. The local ice load was applied to the finite element analysis model, and the Weibull parameters for the target fatigue point were derived. Finally, fatigue damage was evaluated by applying the S-N curve and the Palmgren-Miner rule. For the verification of the proposed method, numerical analyses using direct approach were performed for the same conditions. A numerical model that implements the interaction between ice and structure was introduced to verify the local ice load and the stress calculated from the proposed method. Finally, the fatigue analyses of the Baltic Sea for actual ice conditions were performed, and the results of the proposed method, the method using numerical analysis, and the LR method were compared.

Mechanism for Bank Erosion and Local Scouring in Estuary of the Hangang River

  • Lee, Samhee;Han, Hyeongjun;Choo, Jeongho
    • Journal of Wetlands Research
    • /
    • v.16 no.4
    • /
    • pp.453-462
    • /
    • 2014
  • The levee and bridge pier in estuary of the Hangang River are exposed in a dangerous condition due to bank erosion and local scouring occurred since the summer season in 2011. At first, it is presumed that the high sandbar formed in river channel of the study area was an important element in the occurrence of bank erosion and local scouring. It can be presumed that the record-breaking depth of freezing due to cold wave for the long term during the winter season between 2010 and 2011 as well as the heavy intensive rainfall of 2011 had a decisive effect on the first damage of A section. The second damage of B section mainly occurred around the bridge pier constructed on the high water channel before it was washed away during the winter season between 2011 and 2012. It is considered that the second damage was caused by ice formation and ice floes.

Analysis methodology of local damage to dry storage facility structure subjected to aircraft engine crash

  • Almomani, Belal;Kim, Tae-Yong;Chang, Yoon-Suk
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1394-1405
    • /
    • 2022
  • The importance of ensuring the inherent safety and security has been more emphasized in recent years to demonstrate the integrity of nuclear facilities under external human-induced events (e.g. aircraft crashes). This work suggests a simulation methodology to effectively evaluate the impact of a commercial aircraft engine onto a dry storage facility. A full-scale engine model was developed and verified by Riera force-time history analysis. A reinforced concrete (RC) structure of a dry storage facility was also developed and material behavior of concrete was incorporated using three constitutive models namely: Continuous Surface Cap, Winfrith, and Karagozian & Case for comparison. Strain-based erosion limits for concrete were suitably defined and the local responses were then compared and analyzed with empirical formulas according to variations in impact velocity. The proposed methodology reasonably predicted such local damage modes of RC structure from the engine missile, and the analysis results agreed well with the calculations of empirical formulas. This research is expected to be helpful in reviewing the dry storage facility design and in the probabilistic risk assessment considering diverse impact scenarios.

Low cycle fatigue damage assessment in steel beams

  • Daali, M.L.;Korol, R.M.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.4
    • /
    • pp.341-358
    • /
    • 1995
  • The results of a series of ten W-shaped test specimens subjected to monotonic, quasi-static cyclic loading and fatigue type of loading in the form of constant amplitude tests are presented. The objectives were to assess and compare the rotation capacity and energy absorption of monotonically and cyclically loaded beams, and for the latter specimens to document the deterioration in the form of low cycle fatigue due to local buckling. In addition, strength and energy dissipation deterioration and damage models have been developed for the steel beam section under consideration. Finally, a generalized model which uses plate slenderness values and lateral slenderness is proposed for predicting rate in strength deterioration per reversal and cumulated damage after a given number of reversals.

Structural damage detection including the temperature difference based on response sensitivity analysis

  • Wei, J.J.;Lv, Z.R.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.249-260
    • /
    • 2015
  • Damage detection based on a reference set of measured data usually has the problem of different environmental temperature in the two sets of measurements, and the effect of temperature difference is usually ignored in the subsequent model updating. This paper attempts to identify the structural damage including the temperature difference with artificial measurement noise. Both local damages and the temperature difference are identified in a gradient-based model updating method based on dynamic response sensitivity. The sensitivities of dynamic response with respect to the system parameters and temperature difference are calculated by direct integration method. The measured dynamic responses of the structure from two different states are used directly to identify the structural local damages and the temperature difference. A single degree-of-freedom mass-spring system and a planar truss structure are studied to illustrate the effectiveness of the proposed method.

Hybrid acceleration-impedance sensor nodes on Imote2-platform for damage monitoring in steel girder connections

  • Kim, Jeong-Tae;Park, Jae-Hyung;Hong, Dong-Soo;Ho, Duc-Duy
    • Smart Structures and Systems
    • /
    • v.7 no.5
    • /
    • pp.393-416
    • /
    • 2011
  • Hybrid acceleration-impedance sensor nodes on Imote2-platform are designed for damage monitoring in steel girder connections. Thus, the feasibility of the sensor nodes is examined about its performance for vibration-based global monitoring and impedance-based local monitoring in the structural systems. To achieve the objective, the following approaches are implemented. First, a damage monitoring scheme is described in parallel with global vibration-based methods and local impedance-based methods. Second, multi-scale sensor nodes that enable combined acceleration-impedance monitoring are described on the design of hardware components and embedded software to operate. Third, the performances of the multi-scale sensor nodes are experimentally evaluated from damage monitoring in a lab-scaled steel girder with bolted connection joints.

Study on Stress Recovery Length of 7-Wire Strand due to Local Damage (강연선의 국부적 손상에 따른 응력 회복길이 분석 연구)

  • Seo, Dong-Woo;Kim, Byung-Chul;Jung, Kyu-San;Na, Wongi;Park, Ki-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.150-156
    • /
    • 2017
  • This study examined the stress recovery length due to the local damage of a 7-wire strand, which is applied widely to PSC (Post Tensioned Concrete) bridges and cable-stayed bridges. The 7-wire strand is a multiple stranded steel of PC prestressing strand. Owing to the nature of the material, it is damaged continuously after completion with corrosion being the main cause of damage. On the other hand, due to its structural characteristics, it is difficult to grasp the degree of damage inside the cable and the pattern of stress variation. In the case of cables applied to bridges, the parts that are susceptible to corrosion are generated depending on the water supply and installation shape, which may cause local damage. This study analyzed the tendency of performance degradation and stress recovery length according to local damage of a 7-wire strand, which is applied mainly to bridge post-tensioning or stay cables. This study developed a computer-based simulation model that was validated with experimental results. The model developed in this study can be used to evaluate the safety level and estimate the remaining life span of P SC bridges or cable-stayed bridges.

Analysis of Magnetic Flux Leakage based Local Damage Detection Sensitivity According to Thickness of Steel Plate (누설자속 기반 강판 두께별 국부 손상 진단 감도 분석)

  • Kim, Ju-Won;Yu, Byoungjoon;Park, Sehwan;Park, Seunghee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.2
    • /
    • pp.53-60
    • /
    • 2018
  • To diagnosis the local damages of the steel plates, magnetic flux leakage (MFL) method that is known as a adaptable non-destructive evaluation (NDE) method for continuum ferromagnetic members was applied in this study. To analysis the sensitivity according to thickness of steel plate in MFL method based damage diagnosis, several steel plate specimens that have different thickness were prepared and three depths of artificial damage were formed to the each specimens. To measured the MFL signals, a MFL sensor head that have a constant magnetization intensity were fabricated using a hall sensor and a magnetization yoke using permanent magnets. The magnetic flux signals obtained by using MFL sensor head were improved through a series of signal processing methods. The capability of local damage detection was verified from the measured MFL signals from each damage points. And, the peak to peak values (P-P value) extracted from the detected MFL signals from each thickness specimen were compared each other to analysis the MFL based local damage detection sensitivity according to the thickness of steel plate.

Quantitative Damage Model of Steel Members under Severe Seismic Loading (강한 지진하중하에서 강부재의 정량적인 손상 모델)

  • Park, Yeon Soo;Park, Sun Joon
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.339-353
    • /
    • 1998
  • In this paper, the previous damage models for structures and their components under seismic repeated loading were reviewed systematically. A failure criterion for steel members under severe cyclic excitations as in strong earthquakes was described. A new approach to seismic damage assessment for steel members was proposed. This method was based on a series of the experimental and numerical investigations for steel members under very low cyclic loading. In this study, very low cyclic loading means repetitive loading, 5 to 20 loading cycles, within the large plastic range. The proposed damage assessment method was focused on the local strain history at the cross-section of the most severe concentration of deformation.

  • PDF