• Title/Summary/Keyword: local capacity building

Search Result 134, Processing Time 0.027 seconds

Preliminary Analysis on Improvement of Water Supply Capacity of Sand Dam (샌드댐 설치에 따른 물공급 개선 효과 예비 분석)

  • Chung, Il-Moon;Lee, Jeongwoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.1
    • /
    • pp.29-37
    • /
    • 2021
  • It is important to introduce a local adaptive water supply system for upper mountainous regions, which provide a margin of water supply. This can be done through the process of securing a water source, planning for optimal use, and combining it with a water source that can be linked. In particular, in a mountainous region located at the uppermost part of the watershed, an approach should be found to utilize the groundwater discharge supplied through valley water and lateral discharge. This study sought to improve the water supply system using sand dams in drought-prone areas in Chuncheon, in Gangwon Province. Our approach involved virtually installing a sand storage tank under the existing water source to perform modeling in consideration of the current water intake and calculating the amount of water that can be taken from the sand dam. When the sand dam was applied at a size four times larger than the existing water source, it was found that the groundwater drainage increased significantly with changes in water surface slope and hydraulic conductivity.

A Study on the Role of Service Design in Creating Resident-driven Safe Community (주민주도형 안전 공동체 조성에 있어 서비스디자인의 역할 탐색)

  • Jeon, Young-Ok
    • Journal of Digital Convergence
    • /
    • v.15 no.6
    • /
    • pp.407-414
    • /
    • 2017
  • With an increase in urban crimes in various forms, this study is intended to analyze the effectiveness of the service design that presented a new model resolving crime risks through differentiated thinking paradigm and problem approaches. The empirical case addressed in this study is 'the project to create resident-driven safe community in Duryu-dong, Dalseo-gu, Deagu though service design'. This project is evaluated as having prepared a prevention-oriented local safety system through a preemptive and resident-centered process. The project was promoted as a 'natural monitoring capacity building program' for residents to prevent local crimes, a 'social role expansion program' for local safety, and 'crime prevention environment design', which provides comprehensive solutions for residents' safety. Here, designers act as exerts in designing a task-based platform that can be driven by residents rather than a visual environment improver, and reorganizing the local ecosystem by expanding the opportunities for residents to interact. This case identifies the role of service design as binding the solidarity of local residents beyond the improvement of the crime environment and giving them the potential capacity to maintain a safe living space in relation to a safety issues of community.

Effect of Vertically Travelling Fires on the Collapse of Tall Buildings

  • Kotsovinos, Panagiotis;Jiang, Yaqiang;Usmani, Asif
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.1
    • /
    • pp.49-62
    • /
    • 2013
  • Many previous tall building fires demonstrate that despite code compliant construction fires often spread vertically and burn over multiple floors at the same time. The collapses of the WTC complex buildings in 9/11 as well as other partial collapses like the ones of the Windsor Tower in Madrid and of the Technical University of Delft building posed new questions on the stability of tall buildings in fire. These accidents have shown that local or global collapse is possible in multi-floor fires. In most of the previous work involving multi-floor fires all floors were assumed to be heated simultaneously although in reality fires travel from one floor to another. This paper extends previous research by focusing on the collapse mechanisms of tall buildings in fire and performs a parametric study using various travelling rates. The results of the study demonstrate that vertically travelling fires have beneficial impact in terms of the global structural response of tall buildings in comparison to simultaneous fires. Contrary to the beneficial effect of the travelling fires in terms of the global structural response, it was noticed that higher tensile forces were also present in the floors compared to simultaneous multi-floor case. Designers are therefore advised to consider simultaneous multi-floor fire as an upper bound scenario. However, a scenario where a travelling fire is used is also suggested to be examined, as the tensile capacity of connections may be underestimated.

Nonlinear section model for analysis of RC circular tower structures weakened by openings

  • Lechman, Marek;Stachurski, Andrzej
    • Structural Engineering and Mechanics
    • /
    • v.20 no.2
    • /
    • pp.161-172
    • /
    • 2005
  • This paper presents the section model for analysis of RC circular tower structures based on nonlinear material laws. The governing equations for normal strains due to the bending moment and the normal force are derived in the case when openings are located symmetrically in respect to the bending direction. In this approach the additional reinforcement at openings is also taken into account. The mathematical model is expressed in the form of a set of nonlinear equations which are solved by means of the minimization of the sums of the second powers of the residuals. For minimization the BFGS quasi-Newton and/or Hooke-Jeeves local minimizers suitably modified are applied to take into account the box constraints on variables. The model is verified on the set of data encountered in engineering practice. The numerical examples illustrate the effects of the loading eccentricity and size of the opening on the strains and stresses in concrete and steel in the cross-sections under consideration. Calculated results indicate that the additional reinforcement at the openings increases the resistance capacity of the section by several percent.

Evaluation of Bearing Strength for Composite Joint (합성접합부에서 지압내력 평가식)

  • 김병국;최완철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.347-352
    • /
    • 2002
  • Recent trends in the construction of building frame feature the increase use of composite steel concrete members functioning together in what terms of mixed structural systems. One of such systems, RCS(reinforced concrete column and steel beam) system is introduced and closely examined focusing on bearing strength of the composite joint in this paper. The main objective of this study was to develope one of details to increase bearing capacity while bearing failure is one of the two primary modes of failure in RCS system. Local bearing tests with specimens about 1/3 of the actual concrete column size were performed applying uniform load through steel plate with 100$\times$110mm size. Test results show that specimens with the bearing reinforcement detail developed in this study enhanced the bearing strength by 1.71~3.02 compared to concrete cylinder strength.

  • PDF

Experimental Study of Infilled Wall in Reinforced Concrete Structure (메움벽에 의한 R/C 골조의 내진성능 평가에 관한 연구)

  • 김석균;김정한;김영문
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.403-406
    • /
    • 1999
  • Although infilled wall considered as a non-structural element, the infilled applied in reinforced concrete frame structural systems represents an important element influencing the behaviour and the stability of a structure under seismic effect. This research is performed an experimental investigation of gravity-load designed single-stroy, single-bay, low-rise nonseismic moment-resisting reinforced concrete frame 2 dimension specimens to evaluate the effect of seismic capacity. For pseudo static test, it was manufactured one half scale specimens of two types (Bare Frame, Infilled Frame) based on typical building. The results of these experiments provided regarding the global as well as the local responses of 1) Crack pattern and failure modes, 2) Stiffness, strength.

  • PDF

Evaluation of Structural Capacity of L-shaped Walls with Different Confinement Details Under Web-direction Lateral Force (복부방향 수평하중을 받는 L형 벽체의 횡보강근 구속에 따른 구조성능 평가)

  • 조남선;하상수;최창식;오영훈;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.65-70
    • /
    • 2001
  • The compression toe of structural wall is designed to resist the axial compression and shear force caused by wind or earthquake. The performance of shear wall used in tall building is highly influenced by combined shear and axial force. For this reason, it is possible to result in local brittle failure because of concentrated damage in the potential plastic hinge region under severe earthquake. Thus, it is necessary to establish the lateral confinement details at the plastic hinge of shear wall so that shear wall can behave a ductile manner, The objective of this study is to evaluate the seismic performance of L-shaped walls with different confinement details. For this purpose, three wall specimens were tested experimentally and also analyzed using Nonlinear FEM package.

  • PDF

Estimation of Users' Waiting Cost at Container Terminals in Northern Vietnam

  • Duc, Nguyen Minh;Kim, Sung-June;Jeong, Jung-Sik
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2017.11a
    • /
    • pp.27-29
    • /
    • 2017
  • Container terminals in Northern Vietnam have recorded an impressive development in recent years. This development, however, also raises a fierce competition among local container terminals to attract customers. Beside the handling charges, the vessels' waiting cost is also an important factor that drive the opinion of users in choosing appropriate terminal. This research plans to estimate the waiting cost in different container terminals in Northern Vietnam by building regression equation that describe the relationship between the rate of throughput/capacity and waiting cost/TEU. Queuing theory with the application of Poisson distibution is used to estimate the waiting time of arrival vessels and uncertainty theory is applied to estimate the vessel's daily expenses. Previous studies suggested two different formation of the equation and according to the research results, cubic equation is more suitable in the given case. The research results are also useful for further research which require calculation of waiting cost per TEU in each container terminal in Northern Vietnam.

  • PDF

Analysis of Supply Airflow Control by a Stratified Thermal Model in a VAV System

  • Kim, Seo-Young;Moon, Jeong-Woo;Cho, Hyung-Hee
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.3
    • /
    • pp.46-56
    • /
    • 2001
  • The present study concerns the numerical simulation of a supply airflow control in a variable air volume (VAY) system. A stratified thermal model (multi-zone model) is suggested to predict a local thermal response of an air-conditioned space. The effects of various thermal parameters such as the cooling system capacity, the thermal mass of an air-conditioned space, the time delay of thermal effect, and the building envelope heat transmission are investigated. Further, the influence of control parameters such as the supply air temperature, the PI control factor and the thermostat location on a VAV system is quantitatively delineated. The results obtained show that the previous homogeneous lumped thermal model (single zone model) may overestimate the time taken to the set point temperature. It is also found that there exist the appropriate ranges of the control parameters for the optimal airflow control of the VAV system.

  • PDF

Simulation of Supply Air Control in a VAV System Using a Stratified Lumped Thermal Model (성층화 열용량 모델을 이용한 VAV 시스템 급기 제어 시뮬레이션)

  • 문정우;김서영;김원년;조형희
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.7
    • /
    • pp.632-641
    • /
    • 2000
  • The present study concerns the simulation of supply-air control in a variable air volume (VAV) system. A stratified lumped thermal model (multi-zone model) is suggested to predict local thermal response of an air-conditioned space. The effects of various thermal parameters such as the cooling system capacity, the thermal mass of air-conditioned space, the time delay of thermal effect, and the building envelope heat transmission are investigated in detail. Further, the influence of control parameters, PI control factor and the sensor location on a VAV system is quantitatively delineated. The results obtained show that the previous homogeneous lumped thermal model (1-zone model) may predict a significantly different thermal response in the air-conditioned space according to the sensor location.

  • PDF