• Title/Summary/Keyword: loading test FEM model

Search Result 52, Processing Time 0.019 seconds

A Experimental Study on the Structural Performance of Precast Bracket under Precast Road Deck Slab of Double Deck Tunnel (복층터널에서 도로용 중간슬래브와 연결되는 조립식 브라켓의 구조성능에 관한 실험연구)

  • Kim, Bo Yeon;Lee, Doo Sung;Kim, Tae Kyun;Kim, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.4
    • /
    • pp.647-657
    • /
    • 2017
  • The main purpose of this study is to investigate the static & dynamic behavior of a precast bracket under precast road deck slab of double deck tunnel. In order to improve the construction speed, the field prefabricated bracket to connect the intermediate slab to the precast shield tunnel lining structure has been developed in the 'SPC (Steel Precast Concrete) bracket'. The experiments were performed for the full scale model in order to evaluate the performance of the 'SPC bracket', the structural stability was verified through the FEM analysis. The result of static loading test, no deformations or cracks of the bracket undergo the ultimate load was investigated. In addition, no pulling or deformation of the chemical anchor for fixing the bracket was measured. As a result of dynamic loading test, it was investigated that there is no problem in the chemical anchor for fixing the bracket. FEM analysis showed similar behavior to static load test and it was determined that there is no problem in serviceability and structural safety.

A FEM Alalysis to the Sand Densification due to Increasing Loading (점증하중을 받는 사질토 지반의 조밀화에 대한 유한요소해석)

  • 한경제
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.6
    • /
    • pp.79-85
    • /
    • 2000
  • 본 논문에서는 사질토 지반에 일정기간 계속하여 증가되는 단계별 하중이 작용할 때 발생할수 있는 지반의 밀도화 현상을 hyperbolic model의 매개변수 변화를 고려한 방법으로 유한요소법에 의한 수치적 침하해석에 반영해 주었다. 이를 위해 사질토의 상대밀도별 삼축압축실험을 실시하여 매개변수를 산정하였으며, 이를 토대로 각각의 상대밀도의 변화에 따른 매개변수값을 Lagrange의 다항식 수치보간법으로 프로그램에 반영하였다. 또한 유한요소프로그램 내에서 요소의 체적을 계산하고 체적의 변화를 상대밀도 개념으로 접근함으로서 지반의 밀도화를 프로그램내에서 모사할수 있도록 하였다. 본 연구에서 개발한 해석 프로그램에 의한 지반의 밀도화현상의 모사 결과를 실내 모형기초재하실험에 의하여 비교 분석해 본 결과 기존의 해석 보다 향상된 결과를 나타냄을 알 수 있었다.

  • PDF

Effect of fiber content on the performance of UHPC slabs under impact loading - experimental and analytical investigation

  • Muhammad Umar Khan;Shamsad Ahmad;Mohammed A. Al-Osta;Ali Husain Algadhib;Husain Jubran Al-Gahtani
    • Advances in concrete construction
    • /
    • v.15 no.3
    • /
    • pp.161-170
    • /
    • 2023
  • Ultra-high-performance concrete (UHPC) is produced using high amount of cementitious materials, very low water/cementitious materials ratio, fine-sized fillers, and steel fibers. Due to the dense microstructure of UHPC, it possesses very high strength, elasticity, and durability. Besides that, the UHPC exhibits high ductility and fracture toughness due to presence of fibers in its matrix. While the high ductility of UHPC allows it to undergo high strain/deflection before failure, the high fracture toughness of UHPC greatly enhances its capacity to absorb impact energy without allowing the formation of severe cracking or penetration by the impactor. These advantages with UHPC make it a suitable material for construction of the structural members subjected to special loading conditions. In this research work, the UHPC mixtures having three different dosages of steel fibers (2%, 4% and 6% by weight corresponding to 0.67%, 1.33% and 2% by volume) were characterized in terms of their mechanical properties including facture toughness, before using these concrete mixtures for casting the slab specimens, which were tested under high-energy impact loading with the help of a drop-weight impact test setup. The effect of fiber content on the impact energy absorption capacity and central deflection of the slab specimens were investigated and the equations correlating fiber content with the energy absorption capacity and central deflection were obtained with high degrees of fit. Finite element modeling (FEM) was performed to simulate the behavior of the slabs under impact loading. The FEM results were found to be in good agreement with their corresponding experimentally generated results.

Test and simulation of circular steel tube confined concrete (STCC) columns made of plain UHPC

  • Le, Phong T.;Le, An H.;Binglin, Lai
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.643-657
    • /
    • 2020
  • This study presents experimental and numerical investigations on circular steel tube confined ultra high performance concrete (UHPC) columns under axial compression. The plain UHPC without fibers was designed to achieve a compressive strength ranged between 150 MPa and 200 MPa. Test results revealed that loading on only the UHPC core can generate a significant confinement effect for the UHPC core, thus leading to an increase in both strength and ductility of columns, and restricting the inherent brittleness of unconfined UHPC. All tested columns failed by shear plane failure of the UHPC core, this causes a softening stage in the axial load versus axial strain curves. In addition, an increase in the steel tube thickness or the confinement index was found to increase the strength and ductility enhancement and to reduce the magnitude of the loss of load capacity. Besides, steel tube with higher yield strength can improve the post-peak behavior. Based on the test results, the load contribution of the steel tube and the concrete core to the total load was examined. It was found that no significant confinement effect can be developed before the peak load, while the ductility of post-peak stage is mainly affected by the degree of the confinement effect. A finite element model (FEM) was also constructed in ABAQUS software to validate the test results. The effect of bond strength between the steel tube and the UHPC core was also investigated through the change of friction coefficient in FEM. Furthermore, the mechanism of circular steel tube confined UHPC columns was examined using the established FEM. Based on the results of FEM, the confining pressures along the height of each modeled column were shown. Furthermore, the interaction between the steel tube and the UHPC core was displayed through the slip length and shear stresses between two surfaces of two materials.

Modeling Creep Behavior and Life by Damage Mechanics (손상역학에 의한 크리프 거동 및 수명 모델링)

  • Sin, Chang-Hwan;Jeong, Il-Seop;Chae, Yeong-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1833-1840
    • /
    • 2000
  • Commercially pure copper is tested to obtain creep curves at 2500C. Constitutive relations adopting continuum damage mechanics concept is found to be appropriate to model the creep defor mation up to the tertiary stage. Microscopic observation by SEM reveals that creep condition induces cavities and microcracks subsequently. The constitutive equations along with evaluated creep parameters are implemented into finite element analysis code. The analysis reproduces creep curves under step loading as well as constant loading with reasonable accuracy. Distribution and evolution of damage under creep loading are numerically simulated for two different types of notched specimen. Predicted creep life agrees quite well with rupture test results. The influence of mesh size at notch tip on rupture time prediction is studied, and a degree of refinement is suggested for the specific notched specimens.

Behavior of Tunnel Due to Adjacent Ground Excavation with Pre-loading on Braced Wall (근접 굴착시 흙막이벽 버팀대 선행하중 재하에 따른 터널의 거동)

  • Kim, Il;Lee, Sang-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.163-174
    • /
    • 2007
  • A New pre-loading system, through which a large pre-load could be charged was developed and applied to the braced wall in order to stabilize the adjacent tunnel. A pre-load larger than the designated axial force of bracing was imposed to prevent the horizontal displacement of the braced wall during the ground excavation. For this purpose, real scale model tests (1/10) were conducted, without and with pre-load on braced wall. And numerical analyses were performed for both the cases without and with pre-load, which were half (50%) and full (100%) respectively, and larger scale of the design axial farce of bracing. FEM program called PLAXIS was used for numerical analysis. As a result, it was found that the stability of the existing tunnel adjacent to the braced wall could be greatly enhanced when the horizontal displacement of braced wall was reduced by applying a pre-load, which was larger than the designated axial force of bracing.

In-Plane and Out-of-Plane Test and FEM Analysis of 3D Printing Concrete Specimens According to Stacking Direction (적층방향에 따른 3D프린팅 콘크리트의 면내 및 면외 구조 성능 평가 연구)

  • An, Hyoseo;Lee, Gayoon;Lee, Seong Min;Shin, Dong Won;Lee, Kihak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.321-330
    • /
    • 2023
  • In this study, the structural performance of the specimen fabricated through 3D printing was evaluated through monotonic loading experiments analysis to apply to 3D printed structures. The compression and flexural experiments were carried out, and the experimental results were compared to the finite element model results. The loading directions of specimens were investigated to consider the capacity of specimens with different curing periods, such as 7 and 28 days. As a result, the strength tended to increase slightly depending on the stacking direction. Also, between the 3D-printed panel composite and the non-reinforced panel, the bending performance depended on the presence or absence of composite reinforcement.

Structure Analysis and Loading Test of Torque arm for Driving Gear Unit of Unique Model (독자모델 감속구동장치 토크암의 구조해석 및 하중시험에 관한 연구)

  • Cha Soo-Deok;Choi Jin-Wook;Yu Jai-Il;Lee Min-Soo
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.211-215
    • /
    • 2004
  • This paper describes the result of structure analysis and load test of torque arm for driving gear unit. The purpose of the analysis and test is to evaluate an safety which torque arm shall be considered fully sufficient rigidity so as to satisfy proper system function under maximum load. Driving gear unit consist of gearbox and torque arm. Both components, torque arm is significant component subjected to the vehicle and motor loads. The evaluation methode is used the FEM analysis, static and fatigue test. The test results have been very safety and stable for design load conditions.

  • PDF

Theoretical study of UHPCC composite column behaviors under axial compression

  • Wu, Xiang-Guo;Zou, Ruofei;Zhao, Xinyu;Yu, Qun
    • Structural Engineering and Mechanics
    • /
    • v.55 no.5
    • /
    • pp.931-951
    • /
    • 2015
  • To improve the durability and service life of reinforced concrete column such as bridge piers, an advanced composite column made of Ultra High Performance Cementitious Composites (UHPCC) permanent form is proposed. Based on elasticity plasticity theory, axial compression behavior of the composite column was studied theoretically. The first circumferential cracking load and ultimate limit loading capacity are derived for the composite column. Short composite column compression tests and numerical simulations using FEM method were carried out to justify the theoretical formula. The effects of UHPCC tube thickness on the axial compression behavior were studied. Using the established theoretical model and numerical simulation, the large dimension composite columns are calculated and analyzed with different UHPCC tube thickness. These studies may provide a reference for advanced composite column design and application.

Determination of Deformation Behavior of Coating Layer on Electronic galvanized Sheet Steel using Nano-indentation and FEM (나노 인덴테이션 실험과 유한요소해석을 이용한 전기아연도금강판의 코팅층 체적 거동 결정)

  • Ko, Young-Ho;Lee, Jung-Min;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.186-194
    • /
    • 2005
  • This study was designed to investigate the mechanical properties of the coating layer on electronic galvanized sheet steel as a part of the ongoing research on the coated steel. Those properties were determined using nano-indentation, the finite element method, and artificial neural networks. First and foremost, the load-displacement curve (the loading-unloading curve) of coatings was derived from a nano-indentation test by CSM (continuous stiffness measurement) and was used to measure the elastic modulus and hardness of the coating layer. The properties derived were applied in FE simulations of a nano-indentation test, and the analytical results were compared with the experimental result. A numerical model for FE simulations was established for the coating layer and the substrate separately. Finally, to determine the mechanical properties of the coating, such as the stress-strain curve, functional equations of loading and unloading curves were introduced and computed using the neural networks method. The results show errors within $5\%$ in comparison with the load-displacement measured by a nano-indentation test.