• Title/Summary/Keyword: loading scheme

Search Result 290, Processing Time 0.099 seconds

Second Order Suboptimal Power Allocation for MIMO-OFDM Based Cognitive Radio Systems

  • Nguyen, Tien Hoa;Nguyen, Thanh Hieu;Nguyen, Van Duc;Ha, Duyen Trung;Gelle, Guilllaume;Choo, Hyunseung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2647-2662
    • /
    • 2014
  • This paper proposes an efficient and low complexity power-loading algorithm for MIMO-OFDM downlink based cognitive radio system that maximizes the sum rate of single secondary user (SU) under constraints on the tolerable interference thresholds between secondary user and primary user's frequency bands and the total transmission power. Our suboptimal algorithm is based on the $2^{nd}$ order interference tracking and nulling mechanism to allocate transmission power of the subcarriers among SU's scheme. The performance of our proposed suboptimal scheme is compared with the performance of the classical power loading algorithms, e.g., water filling, $1^{st}$ order interference tracking, nulling, and other suboptimal schemes. Numerical results show that our algorithm has low complexity but obtains a higher channel capacity than that of some previous suboptimal algorithms in some scenarios. We dedicate also that for a given interference threshold, the $2^{nd}$ order interference tracking mechanism has dynamic number of nulling position instead fixed number of nulling position.

Data Sampling-based Angular Space Partitioning for Parallel Skyline Query Processing (데이터 샘플링을 통한 각 기반 공간 분할 병렬 스카이라인 질의처리 기법)

  • Chung, Jaehwa
    • The Journal of Korean Association of Computer Education
    • /
    • v.18 no.5
    • /
    • pp.63-70
    • /
    • 2015
  • In the environment that the complex conditions need to be satisfied, skyline query have been applied to various field. To processing a skyline query in centralized scheme, several techniques have been suggested and recently map/reduce platform based approaches has been proposed which divides data space into multiple partitions for the vast volume of multidimensional data. However, the performances of these approaches are fluctuated due to the uneven data loading between servers and redundant tasks. Motivated by these issues, this paper suggests a novel technique called MR-DEAP which solves the uneven data loading using the random sampling. The experimental result gains the proposed MR-DEAP outperforms MR-Angular and MR-BNL scheme.

Dynamic instability analysis of laminated composite stiffened shell panels subjected to in-plane harmonic edge loading

  • Patel, S.N.;Datta, P.K.;Sheikh, A.H.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.4
    • /
    • pp.483-510
    • /
    • 2006
  • The dynamic instability characteristics of laminated composite stiffened shell panels subjected to in-plane harmonic edge loading are investigated in this paper. The eight-noded isoparametric degenerated shell element and a compatible three-noded curved beam element are used to model the shell panels and the stiffeners respectively. As the usual formulation of degenerated beam element is found to overestimate the torsional rigidity, an attempt has been made to reformulate it in an efficient manner. Moreover the new formulation for the beam element requires five degrees of freedom per node as that of shell element. The method of Hill's infinite determinant is applied to analyze the dynamic instability regions. Numerical results are presented to demonstrate the effects of various parameters like shell geometry, lamination scheme, stiffening scheme, static and dynamic load factors and boundary conditions, on the dynamic instability behaviour of laminated composite stiffened panels subjected to in-plane harmonic loads along the boundaries. The results of free vibration and buckling of the laminated composite stiffened curved panels are also presented.

Electromagnetism Mechanism for Enhancing the Refueling Cycle Length of a WWER-1000

  • Poursalehi, Navid;Nejati-Zadeh, Mostafa;Minuchehr, Abdolhamid
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.43-53
    • /
    • 2017
  • Increasing the operation cycle length can be an important goal in the fuel reload design of a nuclear reactor core. In this research paper, a new optimization approach, electromagnetism mechanism (EM), is applied to the fuel arrangement design of the Bushehr WWER-1000 core. For this purpose, a neutronic solver has been developed for calculating the required parameters during the reload cycle of the reactor. In this package, two modules have been linked, including PARCS v2.7 and WIMS-5B codes, integrated in a solver for using in the fuel arrangement optimization operation. The first results of the prepared package, along with the cycle for the original pattern of Bushehr WWER-1000, are compared and verified according to the Final Safety Analysis Report and then the results of exploited EM linked with Purdue Advanced Reactor Core Simulator (PARCS) and Winfrith Improved Multigroup Scheme (WIMS) codes are reported for the loading pattern optimization. Totally, the numerical results of our loading pattern optimization indicate the power of the EM for this problem and also show the effective improvement of desired parameters for the gained semi-optimized core pattern in comparison to the designer scheme.

ExLO: Development of a Three-Dimensional Hydrocode (ExLO:3차원 유체동역학 프로그램의 개발)

  • Chung, W.J.;Lee, M.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.235-237
    • /
    • 2008
  • A unified hydrocode, ExLO, in which Largrangian, ALE and Eulerian solvers are incorporated into a single framework, has recently been developed in Korea. It is based on the three dimensional explicit finite element method and written in C++. ExLO is mainly designed for the calculation of structural responses to highly transient loading conditions, such as high-speed impacts, high-speed machining, high speed forming and explosions. In this paper the numerical schemes are described. Some improvements of the material interface and advection scheme are included. Details and issues of the momentum advection scheme are provided. In this paper the modeling capability of ExLO has been described for two extreme loading events; high-speed impacts and explosions. Numerical predictions are in good agreement with the existing experimental data. Specific applications of the code are discussed in a separate paper in this journal. Eventually ExLO will be providing an optimum simulation environment to engineering problems including the fluid-structure interaction problems, since it allows regions of a problem to be modeled with Lagrangian, ALE or Eulerian schemes in a single framework.

  • PDF

Development of a seismic retrofit system made of steel frame with vertical slits

  • Kang, Hyungoo;Adane, Michael;Chun, Seungho;Kim, Jinkoo
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.283-294
    • /
    • 2022
  • In this study, a new seismic retrofit scheme of building structures is developed by combining a steel moment frame and steel slit plates to be installed inside of an existing reinforced concrete frame. This device has the energy dissipation capability of slit dampers with slight loss of stiffness compared to the conventional steel frame reinforcement method. In order to investigate the seismic performance of the retrofit system, it was installed inside of a reinforced concrete frame and tested under cyclic loading. Finite element analysis was carried out for validation of the test results, and it was observed that the analysis and the test results match well. An analytical model was developed to apply the retrofit system to a commercial software to be used for seismic retrofit design of an example structure. The effectiveness of the retrofit scheme was investigated through nonlinear time-history response analysis (NLTHA). The cyclic loading test showed that the steel frame with slit dampers provides significant increase in strength and ductility to the bare structure. According to the analysis results of a case study building, the proposed system turned out to be effective in decreasing the seismic response of the model structure below the given target limit state.

Evaluation of the Established Reduction Scheme in Implementation Plan of Total Maximum Daily Loads (수질오염총량관리 시행계획에서 수립된 삭감계획의 평가)

  • Park, Jae Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.297-305
    • /
    • 2008
  • It is necessary to select proper reduction methods and to calculate reasonably reduction amount for making good practice of the reduction scheme. Moreover, it is suggested that the reduction amount have to be distributed properly during the planning period. In other words, it has not to be concentrated on the specific year (especially final year of the planning period). The reason why, if the reduction amount concentrate on the final year of the planning period, allotment loading amount could not be achieved in some cases (e.g., insufficiency of budget, extension of construction duration). Even though much of the budget have been supported from national treasury (about 50%), it is thought the role of the local government must be strengthened gradually.

Authentication for Security on Satellite Control Communications (위성관제통신에서 안정성을 위한 인증)

  • Park, Jeong-Hyun;Rim, Sun-Bae
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.10
    • /
    • pp.2501-2511
    • /
    • 1997
  • This paper presents an authentication model for security on satellite command & control communications. The proposed authentication scheme is based on the modified Shamir's signature scheme using a satellite ID(Identity) and the model uses time stamp for protection of command replay attack from unauthorized center. The message authentication with command counter that includes an available key and the algorithm is for loading and execution of commands in the model. Two-way scheme for key change and confirmation between satellite control center and satellite is also proposed.

  • PDF

Statistical Estimation of the Number of Contending Stations and its Application to a Multi-round Contention Resolution Scheme

  • Jang, Seowoo;Choi, Jin-Ghoo;Yoon, Sung-Guk
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4259-4271
    • /
    • 2016
  • With the increased popularity of IEEE 802.11 WLAN, the density of the WLAN devices per access point has also increased, resulting in throughput performance degradation. One of the solutions to the problem is improving the protocol efficiency by a using multi-round contention scheme. This paper first discusses how to estimate the number of contending stations in a WLAN network by using minimum elapsed backoff counter values that can be easily monitored by each station. An approximate closed form expression is derived for the number of active contending stations using the smallest backoff counter value in the network. We then apply this result to adapt the number of contending rounds according to the network loading level to enhance the throughput performance of a multi-round contention scheme. Through simulation, we show that the accuracy of the estimation algorithm depends on the contention parameters of W and the number of backoff counter observing samples, and found a reasonable value for each parameter. We clearly show that our adaptive multi-round contention scheme outperforms the standard contention scheme that uses a fixed number of rounds.

Numerical Analysis of Hypersonic Shock-Shock Interaction using AUSMPW+ Scheme and Gas Reaction Models

  • Lee, Joon Ho;Kim, Chongam;Rho, Oh-Hyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.21-28
    • /
    • 2000
  • The flowfield of hypersonic shock-shock interaction has been simulated using a two-dimensional Navier-Stokes code based on AUSMPW+ scheme. AUSMPW+ scheme is a new hybrid flux splitting scheme, which is improved by introducing pressure-based weight functions to eliminate the typical drawbacks of AUSM-type schemes, such as non-monotone pressure solutions. To study the real gas effects, three different gas models are taken into account in the present paper: perfect gas, equilibrium flow and non equilibrium flow. It has been investigated how each gas model influences on the peak surface loading, such as wall pressure and wall heat transfer, and unsteady structure of flowfield in the region of shock-shock interaction. With the results, the value of peak pressure is not sensitive to the real gas effects nor to the wall catalyticity. However, the value of peak heat transfer rates is affected by the real gas effects and the wall catalyticity. Also, the structure of the flowfield changes drastically in the presence of real gas effects.

  • PDF