• Title/Summary/Keyword: loading rate effect

Search Result 544, Processing Time 0.03 seconds

Traffic-load-induced dynamic stress accumulation in subgrade and subsoil using small scale model tests

  • Tang, Lian Sheng;Chen, Hao Kun;Sun, Yin Lei;Zhang, Qing Hua;Liao, Hua Rong
    • Geomechanics and Engineering
    • /
    • v.16 no.2
    • /
    • pp.113-124
    • /
    • 2018
  • Under repeated loading, the residual stresses within the subgrade and subsoil can accelerate the deformation of the road structures. In this paper, a series of laboratory cyclic loading model tests and small-scale model tests were conducted to investigate the dynamic stress response within soils under different loading conditions. The experimental results showed that a dynamic stress accumulation effect occurred if the soil showed cumulative deformation: (1) the residual stress increased and accumulated with an increasing number of loading cycles, and (2) the residual stress was superimposed on the stress response of the subsequent loading cycles, inducing a greater peak stress response. There are two conditions that must be met for the dynamic stress accumulation effect to occur. A threshold state exists only if the external load exceeds the cyclic threshold stress. Then, the stress accumulation effect occurs. A higher loading frequency results in a higher rate of increase for the residual stress. In addition to the superposition of the increasing residual stress, soil densification might contribute to the increasing peak stress during cyclic loading. An increase in soil stiffness and a decrease in dissipative energy induce a greater stress transmission within the material.

Effect of Hydraulic Loading on Biofilm Characteristics in an Inverse Fluidized Bed Biofilm Reactor (역 유동층 생물막 반응기에서 수리학적 부하가 생물막 성상에 미치는 영향)

  • 김동석;최윤찬
    • Journal of Environmental Science International
    • /
    • v.4 no.3
    • /
    • pp.221-228
    • /
    • 1995
  • Stability of reactor and effect on biofilm characteristics were investigated by varying the hydraulic residence time in an inverse fluidized bed biofilm reactor(IFBBR). The SCOD removal efficiency was maintained above 90 % in the HRT range of 12hr to 2hr, but the TCOD removal efficiency was dropped down to 50% because of biomass detachment from overgrown bioparticles. The reactor was stably operated up to the conditions of HRT of 2hr and F/M ratio of 4.5kgCOD/$m^3$/day, but above the range there was an abrupt increase of filamentous microorganisms. The optimum biofilm thickness and the biofilm dry density in this experiment were shown as $200\mu\textrm{m}$ and $0.08 g/cm^3$, respectively. The substrate removal rate of this system was found as 1st order because the biofilm was maintained slightly thin by the increased hydraulic loading rate.

  • PDF

Performance of Upflow Anaerobic Sludge Blanket (UASB) Reactor Depending on Reactor Configuration and Sludge Bed Fluidization (반응조 형태 및 슬러지층 유동화 특성에 따른 Upflow Anaerobic Sludge Blanket (UASB) 반응조의 운전효율)

  • Jeong Byung-Gon
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.2 s.89
    • /
    • pp.179-185
    • /
    • 2006
  • Effect of organic loading rate on UASB performance was evaluated under the renditions of some surface area/reactor volume ratio and different reactor diameter. At the low leading rate of 0.4 kg $COD/m^3{\cdot}d$, reactor performance was not affected by reactor diameter. At the organic loading rate of 6 kg $COD/m^3{\cdot}d$, however, volatile acid accumulation and low COD removal efficiency is observed in reactor having 6.4 cm diameter, while volatile acid is not accumulated at all and high COD removal efficiency is observed in reactor having 3 cm diameter. Such a difference of reactor performance depending on reactor diameter can be explained that sludge bed can be fluidized by evolved gas bubble in narrow reactor, while sludge bed ran not be fluidized by evolved gas bubble only in wide reactor. At a high organic loading rate of 20 kg $COD/m^3{\cdot}d$, it can be judged that there is no relation between reactor configuration and reactor performance because all reactors showed very low COD removal efficiencies regardless of reactor diameter. Narrow and tall type reactor is favorable condition for making sludge bed fluidization at a constant surface area/reactor volume ratio. Thus, it can be judged that reactor configuration and sludge bed fluidization have great influence to reactor performance.

Constant Rate of Strain Consolidation Test for Radially inward drainage (일정변형률 압밀시험을 이용한 방사내측배수 압밀해석)

  • Yune, Chan-Young;Yang, Bong-Keun;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.173-180
    • /
    • 2004
  • In this study, a consolidometer for radially inward drainage under constant rate of strain (CRS) loading was developed. Theoretical solutions for determining the effective vertical stress and the coefficient of consolidation from the test result were also proposed. Reconstituted kaolinite samples which were consolidated up to 130 kPa were used to verify the developed consolidometer and the theory. Comparative experiments with CRS loading and incremental loading (IL) were carried out in radially in ward drainage as well as vertical and radially outward drainage. The results obtained from the developed CRS loading test agreed consistently with those of the conventional incremental loading test according to drainage directions. And the effect of drainage direction and drain diameter to consolidation characteristics was also evaluated. From the test results the applicability and the reliability of the suggested method were verified.

  • PDF

Analytical Examination of Ductile Crack Initiation with Strength Mismatch under Dynamic Loading - Criterion for Ductile Crack Initiation Effect of Strength Mismatch and Dynamic Loading (Report 2) - (동적하중하에서의 강도적 불균질재의 연성크랙 발생한계의 해석적 검토 - 강도적 불균질 및 동적부하의 영향에 의한 연성크랙 발생조건 (제 2 보) -)

  • ;Mitsuru Ohata;Masahito Mochizuki;;Masao Toyoda
    • Journal of Welding and Joining
    • /
    • v.21 no.7
    • /
    • pp.49-58
    • /
    • 2003
  • It has been well known that ductile fracture of steel is accelerated by triaxiality stresses. The characteristics of ductile crack initiation in steels are evaluate quantitatively using two-parameter criterion based on equivalent plastic strain and stress triaxiality. Recently, the characteristics of critical crack initiation of steels are quantitatively estimated using the two-parameter, that is, equivalent plastic strain and stress triaxiality, criterion. This study is paid to the fundamental clarification of the effect of geometrical heterogeneity and strength mismatching, which can elevate plastic constraint due to heterogeneous plastic straining, and loading rate on critical condition to initiate ductile crack using two-parameter. Then, the crack initiation testing were conducted under static and dynamic loading. To evaluate the stress/strain state in the specimens especially under dynamic loading, thermal elastic-plastic dynamic FE-analysis considering the temperature rise was used. The result showed that the critical global strain to initiate ductile fracture in specimens with strength mismatch under various loading rate cu be estimated based on the local criterion, that is two-parameter criterion obtained on homogeneous specimens under static tension, by mean of FE-analysis taken into account accurately both strength mismatch and dynamic loading effects on stress/strain behavior.

The Effect of Sulfur/Limestone Ratio on the Efficiency of Sulfur-Utilizing Denitrification (황/석회석 충전비가 황-이용 탈질효율에 미치는 영향)

  • Shin, Hyung-Soon;Lee, Il-Su;Hwang, Yong-Yoo;Bae, Jae-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.3
    • /
    • pp.271-280
    • /
    • 2000
  • This study was conducted to determine the applicable loading rate and to evaluate the possibility of using limestones as an alkalinity source for the removal of ${NO_3}^{-}-N$ remaining after denitrification/nitrification process with the down-flow sulfur packed bed reactor(SPBR). The pretreated sewage was fed to SPBR. Three SPBRs were filled with elemental sulfur particles and limestones and the volumetric ratios of sulfur to limestone were 0%, 12.5% and 25% for R-0%, R-12.5% and R-25%, respectively. The applicable loading rate was evaluated increasing flow rate with influent ${NO_3}^{-}-N$ concentration of 20 mg/L. For R-0% with external alkalinity supply, denitrification efficiency was greater than 96% up to loading rate of $354.8g\;{NO_3}^{-}-N/m^3{\cdot}day$, and corresponding EBCT was 1.4hr. For R-12.5% and R-25%, where alkalinity was supplied by the limestone filled in the reactor, denitrification efficiency was greater than 94% up to loading rate of $283.8g\;{NO_3}^{-}-N/m^3{\cdot}day$, and corresponding EBCT was 1.7hr. The slightly better performance of R-12.5 compared to R-25 suggests that the volumetric sulfur to limestone ratio of 12.5% was enough for the supply of alkalinity required for sulfur-utilizing denitrification. DO was appeared not showing inhibitory effect on sulfur-utilizing denitrification. The clogging of SPBR caused by the produced gas can effectively be eliminated by regular introduction of treated water in up-flow mode.

  • PDF

A Study on the Interlaminar Fracture Toughness of Hybrid Composites (하이브리드 복합재료의 층간파괴인성치에 관한 연구)

  • Kim, Hyung-Jin;Gwark, Dae-Won;Lee, Hern-Sik;Kim, Jae-Dong;Koh, Sung-Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.4
    • /
    • pp.328-336
    • /
    • 2004
  • This paper describes the effect of loading rate, specimen geometries and material properties for ModeⅠ and Mode Ⅱ interlaminar fracture toughness of hybrid composite by using double cantilever beam (DCB) and end notched flexure (ENF) specimen. In the range of loading rate 0.2~20mm/min, there is found to be no significant effect of loading rate with the value of critical energy release rate (Gc).The value of Gc for variation of initial crack length are nearly similar values when material properties are CF/CF and GF/GF, however, the value of Gc are highest with the increasing intial crack length at CF/GF. The SEM photographs show good fiber distribution and interfacial bonding of hybrid composites when the moulding is the CF/GF.

A Study on Mode I Interlaminar Fracture Toughness of Hybrid Composites (하이브리드 복합재료의 모드 I 층간파괴인성치에 관한 연구)

  • 김형진;곽대원;김재동;고성위
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.262-268
    • /
    • 2003
  • This paper describes the effect of loading rate, specimen geometries and material properties for Mode I interlaminar fracture toughness of hybrid composite by using double cantilever beam (DCB) specimen. In the range of loading rate 0.2-20mm/min, there is found to be no significant effect of loading rate with the value of critical energy release rate (G_IC). The value of $G_IC$ for variation of initial crack length are nearly similar values when material properties are CF/CF and GF/GF, however, the value of $G_IC/$ are highest with the increasing initial crack length at CF/GF. The SEM photographs show good fiber distribution and interfacial bonding of hybrid composites when the moulding is the CF/GF

Analytical Modeling of Seismic Isolators at Cold Temperature Considering Strain Rate Effects (변형도 속도효과를 고려한 저온에서의 면진장치 해석모델)

  • 김대곤
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.97-105
    • /
    • 2001
  • Rubber bearings may exhibit a significant cold temperature effect and some velocity dependency(strain rate effect). Both of these attributes which affect non-linear behavior must be accounted for when accurately modeling the bearings behavior, therefore, an analytical models is proposed to consider the effects of the cold temperature and strain rate on both rubber and lead. From the results of an experimental investigation where the frozen bearings were tested under lateral cyclic loading with constant axial load, a non-linear system identification with least squares procedure was applied to determine the material properties of rubber and lead. It is demonstrated that the proposed analytical model is able to simulate the reversed cyclic loading behavior of elastometric and lead-rubber bearings.

  • PDF

Comparison of Overall Oxygen Transfer Coefficient in the Membrane Coupled High Performance Reactor for a High Organic Loading Wastewater Treatment (고부하 유기성 폐수처리를 위한 분리막 결합형 순산소 고효율 포기장치의 총괄 산소전달효율 평가)

  • Kang, Bum-Hee;Lim, Kyeong-Ho;Lee, Sang-Min
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.81-88
    • /
    • 2010
  • This study was conducted to find the capability of comparison of overall oxygen transfer coefficient in the membrane coupled high performance reactor (MPHCR) in treating high organic loading wastewater. Effluent quality had been analyzed while the influent organic loading rate was changed from 2 to $7kg\;COD/m^3{\cdot}day$. The oxygen transfer coefficients had been investigated using two-phase nozzle for operating variables which were internal circulation flowrate (5~8 L/min), air flow rate (0.0125~0.2 L/min), liquid temperature ($10{\sim}20^{\circ}C$), and pure-oxygen flow rate (0.0125~0.2 L/min). The overall oxygen transfer coefficient was increased with flowrate of internal circulation and air and high temperature. Especially, internal circulation flow rate showed distinct effect on overall oxygen transfer coefficient due to an increase of gas holdup and air-liquid contract area by two-phase nozzle. In the high range of organic loading rate from 4 to $7kg\;COD/m^3{\cdot}day$, the removable efficiency of COD was 91%. Conventional activated sludge process usually treat organic loading from 0.32 to $0.64kg\;COD/m^3{\cdot}day$ however, the MPHCR can treat 10 to 20 times higher if it would be compared to the conventional activated sludge process. Foaming problem often happened and caused biomass wash out of the reactor, therefore, the foaming should be controlled for the enhanced operation.