• Title/Summary/Keyword: loading rate effect

Search Result 544, Processing Time 0.03 seconds

The Effect of Loading Waveform on the High Temperature Fatigue Crack Propagation in P92 and STS 316L Steel (P92와 STS 316L강의 고온 피로 균열 성장에 미치는 하중 파형의 영향)

  • 김수영;임병수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.136-140
    • /
    • 2002
  • High temperature fatigue crack growth behavior of P92 and STS 316L steel were investigated under four load conditions using CT type specimens. Loading and unloading times for the low wave forms were combinations of 1 sec. and 50 sec., which were two symmetric wave forms and two unsymmetric wave forms. Their behaviors are characterized using ΔK parameter. In STS 316L, Crack growth rate generally increases as frequency decreases. However, sensitivity of the loading rate to crack growth rate was fecund to be far greater than that of the unloading time. It is because as loading time increases, creep occurs at crack tip causing the crack growth rate to increase. However creep does not occur at the crack tip even if the unloading time is increased. In P92 steel, crack growth rate showed same behavior as in STS 316L. But the increase in loading or unloading time made almost no difference in crack growth rate, suggesting that no significant creep occurs in P92 steel even though loading time increases. After conducting high temperature tensile tests and comparing high temperature fatigue crack growth rates under various wave forms, it was proved that P92 steel has not only good high temperature properties but also improved, better high temperature fatigue properties than STS 316L.

Effect of Organic Loading Rate on the Performance of Anaerobic Hybrid Reactor (유기물 부하가 Anaerobic Hybrid Reactor 운전효율에 미치는 영향)

  • Shin, Chang-Ha;Oh, Dae-Yang;Kim, Tae-Hoon;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.4
    • /
    • pp.497-502
    • /
    • 2012
  • Anaerobic Digestion Process is evaluated as efficient wastewater treatment process with the removal of high concentrations of organic waste and production of biogas. This study was performed using hybrid anaerobic hybrid reactor (AHR) which consists of anaerobic sludge blanket (UASB) and biofilm-coated filter media was applied for Palm Oil Mill Effluent (POME) for 80 days to know optimum removal efficiency and production of biogas by comparing each part which divided changing Organic Loading Rate (OLR). As a result of this study, the removal efficiency was 90.4 % when the organic loading rate of influent was 15 kg COD/$m^3$/day. Since organic loading rate was up to 20 kg COD/$m^3$/day, the removal rate declined 80.7%. Over loading of influent caused sludge expansion and overproduction of microorganism. Amount of biogas was collected 82.3 L/day and pH was remained 6.9 constantly with balance of alkalinity.

Relationships of Loading Rates and Bearing Capacities on Intermediate Soils (재하속도를 이용한 중간토의 지지력 평가)

  • 박중배
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.101-114
    • /
    • 1996
  • In this study, the characteristics of bearing capacity and deformation of intermediate soils are investigated through centrifuge tests. The experimental parameters are footing width, initial stress condition of soils and relative loading rate defined relationship of loading rate and permeability of soils. It is examined that loading rate influences on the bearing capacities and deformations. Based on the test results, some problem of existing specification are introduced in the view of related loading rates and load intensities. Especially it is showed that load intensities magnitude rlre reversed in the same settlement ratio(s/B(%)), due to partial drained effect as well as loading rates in undrained con dition based on the excess pore pressure and deformations measured under loading.

  • PDF

Effect of Mode II in The Fatigue Crack Propagation Behavior by Variation of Multilevel Loading Direction (다단계 하중방향 변화에 의한 피로균열 전파거동에서의 모드II 영향)

  • 홍석표;송삼홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.725-728
    • /
    • 2004
  • In this study, the effect of mode II by variation of multilevel loading direction was experimentally investigated in the fatigue crack propagation behavior. To generate mixed-mode I+II loading state, the compact tension shear(CTS) specimen and loading device were used in this tests. The experimental method divided into three steps and three cases that were step I(0$^{\circ}$), step II(30$^{\circ}$, 60$^{\circ}$, 90$^{\circ}$),step III(0$^{\circ}$) and case I(0$^{\circ}$ ⇒ 30$^{\circ}$ ⇒ 0$^{\circ}$), case II(0$^{\circ}$ ⇒ 60$^{\circ}$ ⇒ 0$^{\circ}$), case III(0$^{\circ}$ ⇒ 90$^{\circ}$ ⇒ 0$^{\circ}$). The result of test, the step II affected to the step III in the all case. Specially, The fatigue crack propagation rate was faster and the fatigue life was smaller than of mixed mode I+II(30$^{\circ}$,60$^{\circ}$) due to the effect of mode II in the step III of the case III

  • PDF

A Study on Mode II Interlaminar Fracture Toughness of Hybrid Composites (하이브리드 복합재료의 모드II 층간파괴인성치에 관한 연구)

  • 김형진;박명일;곽대원;김재동;고성위
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.42-47
    • /
    • 2002
  • This paper describes the effect of loading rate, specimen geometries and material properties for Mode II interlaminar fracture toughness of hybrid composite by using end notched flexure(ENF) specimen. In the range of loading rate 0.5~2mm/min, there is found to be no significant effect of loading rate with the value of critical energy release rate( $G_{IIc}$). there is no dependence of the interlaminar fracture energy upon the specimen width over the specimen widths examined. The value of $G_{IIc}$ for variation of initial crack length are nearly similiar values when material properties are CF/CF and GF/GF, however, the value of $G_{IIc}$ are highest with the increasing intial crack length at CF/GF. The values of $G_{IIc}$ for variation material properties are higher with the increasing moulding pressure when moulding pressures are 307, 431, 585㎪. The SEM photographs show good fiber distribution and interfacial bonding of hybrid composites when the moulding is the CF/GF.e CF/GF.

Characteristics of Anaerobic Digestion using Food waste leachate under Increased Organic Loading rate (유기물부하량 증가에 따른 음폐수 혐기성소화의 특성 분석)

  • Jae-Hoon Jeung;Woo-Jin Chung;Soon-Woong Chang;Jin-Tea Kim;Seong-Yeob Jeong;Seung-Youn Yang
    • Journal of Environmental Science International
    • /
    • v.31 no.12
    • /
    • pp.1127-1134
    • /
    • 2022
  • Herein , the effect of changes in the organic loading rate in anaerobic digestion was evaluated. The experiment was carried out by a laboratory -scale semi-continuous stirred tank reactor, and feedstock was food-waste leached. The organic loading rate was increased by 0.5 kgVS/m3 in each phase from 1.0 kgVS/m3 to 4.0 kgVS/m3. At the end of the operation, to check the failure of the reactor, the organic loading rate was increased by 1.0 kgVS/m3 in each phase and reached 6.0 kgVS/m3. This shows that the biogas yield decreased as organic loading rate increased. Biogas production seemed to be unstable at 3.5-6.0 kgVS/m3. Moreover, biogas production dramatically fell to approximately 0 mL at 6.0 kgVS/m3, which was decided as the operation failure on the 16th day of the las tphase. The result of the reactor analysis shows that the cumulation of volatile fatty acid increased as the organic loading rate increased. This seems to occur due to the decreasein pH in the reactor and led to extinction of anaerobic bacteria, which were the biogas products. Although the buffer compound (alkalinity) could prevent the decline in pH, the concentration of alkalinity was found to be lacking at a high organic loading rate

Dynamic bending behaviours of RC beams under monotonic loading with variable rates

  • Xiao, Shiyun;Li, Jianbo;Mo, Yi-Lung
    • Computers and Concrete
    • /
    • v.20 no.3
    • /
    • pp.339-350
    • /
    • 2017
  • Dynamic behaviours of reinforced concrete (RC) bending beams subjected to monotonic loading with different loading rates were studied. A dynamic experiment was carried out with the electro-hydraulic servo system manufactured by MTS (Mechanical Testing and Simulation) Systems Corporation to study the effect of loading rates on the mechanical behaviours of RC beams. The monotonic displacement control loading, with loading rates of 0.1 mm/s, 0.5 mm/s, 1 mm/s, 5 mm/s and 10 mm/s, was imposed. According to the test results, the effects of loading rates on the failure model and load-displacement curve of RC beams were investigated. The influences of loading rates on the cracking, ultimate, yield and failure strengths and displacements, ductility and dissipated energy capability of RC beams were studied. Then, the three-dimensional finite element models of RC beams, with the rate-dependent DP (Drucker-Prager) model of concrete and three rate-dependent model of steel reinforcement, were described and verified using the experimental results. Finally, the dynamic mechanical behaviours and deformation behaviours of the numerical results were compared with those of the experimental results.

Effect of Embedment Ratio and Loading Rate on Uplift Adhesion Factor of Concrete Driven Pile (근입비와 인발속도가 콘크리트 항타말뚝의 인발부착계수에 미치는 영향)

  • Kim Jong-In;Park Jeong-Jun;Shin Eun-Chul
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.4
    • /
    • pp.367-371
    • /
    • 2005
  • Pile foundations are utilized when soil is so weak that shallow foundations are not suitable or point load is concentrated in small area. Such soil can be formed by the land reclamation works which have extensively been executed along the coastal line of southern and western parts of the Korean Peninsula. The working load at pile is sometimes subjected to not only compression load but also lateral load sad uplift forces. But in most of the practice design, uplift capacity of pile foundation is not considered and estimation of uplift capacity is presumed on the compression skin friction. This study was carried out to determine that the effect of embedment ratio and loading rate on uplift adhesion factor of concrete pile driven in clay. Based on the test results, the critical embedment ratio is about 9. Adhesion factor is constant under the critical embedment ratio, and decreasing over the critical embedment ratio. Also, adhesion factor is increased with the loading rate is increased.

Frequency Dependence in Large Strain Range During Cyclic Triaxial Tests of Clay (점성토의 진동삼축시험시 대변형률영역에서의 주파수 의존성)

  • Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.5
    • /
    • pp.63-71
    • /
    • 2006
  • In the present study, the dynamic deformation characteristics of clay, including the effect of loading rate in large strain ranges, were examined by performing undrained cyclic triaxial test. The test results showed that the loading rate to failure decreased with increasing loading amplitude and decreasing loading frequency. While the stress-strain relationships was not affected by loading frequency, excess pore pressure was affected significantly with the change in loading frequency. The change for 0.1 Hz was larger for than that of 0.01 Hz, resulting in inclined effective stress paths. Furthermore, the lower the frequency was, the higher the excess pore pressure was in the first loading.

Bridging Effect and Fatigue Crack Growth of Silicon Nitride (질화규소의 피로균열진전과 입자가교효과)

  • 유성근
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.11
    • /
    • pp.1203-1208
    • /
    • 1996
  • Crack growth tests on silicon nitride have been made to clarify the crack growth characteristics under static and cyclic loading. Under constant K(K: stress intensity factor) static loading the crack growth rate in silicon nitride decreases with increasing crack extension and is finally arrested. The cack growth resistiance is largely reduced by the application of stress cycling and though the crack growth resistiacne increases with increasing of crack extension the increasing rate is much smaller under cyclic loading than under static loading.

  • PDF