• Title/Summary/Keyword: loading history

Search Result 344, Processing Time 0.027 seconds

Nonlinear analysis of stability of rock wedges in the abutments of an arch dam due to seismic loading

  • Mostafaei, Hasan;Behnamfar, Farhad;Alembagheri, Mohammad
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.4
    • /
    • pp.295-317
    • /
    • 2020
  • Investigation of the stability of arch dam abutments is one of the most important aspects in the analysis of this type of dams. To this end, the Bakhtiari dam, a doubly curved arch dam having six wedges at each of its abutments, is selected. The seismic safety of dam abutments is studied through time history analysis using the design-based earthquake (DBE) and maximum credible earthquake (MCE) hazard levels. Londe limit equilibrium method is used to calculate the stability of wedges in abutments. The thrust forces are obtained using ABAQUS, and stability of wedges is calculated using the code written within MATLAB. Effects of foundation flexibility, grout curtain performance, vertical component of earthquake, nonlinear behavior of materials, and geometrical nonlinearity on the safety factor of the abutments are scrutinized. The results show that the grout curtain performance is the main affecting factor on the stability of the abutments, while nonlinear behavior of the materials is the least affecting factor amongst others. Also, it is resulted that increasing number of the contraction joints can improve the seismic stability of dam. A cap is observed on the number of joints, above which the safety factor does not change incredibly.

Implementation of Memory Efficient Flash Translation Layer for Open-channel SSDs

  • Oh, Gijun;Ahn, Sungyong
    • International journal of advanced smart convergence
    • /
    • v.10 no.1
    • /
    • pp.142-150
    • /
    • 2021
  • Open-channel SSD is a new type of Solid-State Disk (SSD) that improves the garbage collection overhead and write amplification due to physical constraints of NAND flash memory by exposing the internal structure of the SSD to the host. However, the host-level Flash Translation Layer (FTL) provided for open-channel SSDs in the current Linux kernel consumes host memory excessively because it use page-level mapping table to translate logical address to physical address. Therefore, in this paper, we implemente a selective mapping table loading scheme that loads only a currently required part of the mapping table to the mapping table cache from SSD instead of entire mapping table. In addition, to increase the hit ratio of the mapping table cache, filesystem information and mapping table access history are utilized for cache replacement policy. The proposed scheme is implemented in the host-level FTL of the Linux kernel and evaluated using open-channel SSD emulator. According to the evaluation results, we can achieve 80% of I/O performance using the only 32% of memory usage compared to the previous host-level FTL.

Seismic demand estimation of electrical cabinet in nuclear power plant considering equipment-anchor-interaction

  • Cho, Sung Gook;Salman, Kashif
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1382-1393
    • /
    • 2022
  • This paper investigates the seismic behavior of an electrical cabinet considering the influence of equipment-anchor-interaction (EAI) that is generally not taken into consideration in a decoupled analysis. The hysteresis behavior of an anchor bolt in concrete was thereby considered to highlight this interaction effect. To this end, the experimental behavior of an anchor bolt under reversed cyclic loading was taken from the recently developed literature, and a numerical model for the anchor hysteresis was developed using the component approach. The hysteresis properties were then used to calibrate the multi-linear link element that is implemented as a boundary condition for the cabinet incorporating the EAI. To highlight this EAI further, the nonlinear time history analysis was performed for a cabinet considering the hysteresis behavior comparative to a fixed boundary condition. Additionally, the influence on the seismic fragility was evaluated for the operational and structural condition of the cabinet. The numerical analysis considering the anchor hysteresis manifests that the in-cabinet response spectra (ICRS) are significantly amplified with the corresponding reduction in the seismic capacity of 25% and 15% for an operational and structural safety condition under the selected protocols. Considering the fixed boundary condition over a realistic hysteresis behavior of the anchor bolt is more likely to overestimate the seismic capacity of the cabinet in a seismic qualification procedure.

Combustion Efficiency Estimation Method of Solid Propellants and the Effects of Grain Shape using Closed Bomb Test (CBT를 이용한 고체 추진제의 연소효율 도출 방법과 그레인 형상의 영향 분석)

  • Jonggeun Park;Hong-Gye Sung;Wonmin Lee;Eunmi Kim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.6
    • /
    • pp.53-61
    • /
    • 2022
  • The estimation method of combustion efficiency has been introduced by using closed bomb test(CBT). The Noble-Abel equation of state was applied to consider the real gas effects to take account of high operation pressure about a couple of 100 atm. of CBT. The heat loss through the CBT wall was considered. The volume change of grain was calculated by applying form functions, which estimated combustion efficiency of 8 different gain shapes. The combustion estimation method proposed in this study was fairly validated by the comparision with the pressure-time history data of the CBT experiments. The effects of both grain shape and propellant loading density were analyzed.

Investigation the effect of dynamic loading on the deformation of ancient man-made underground spaces

  • Rezaee, Hooman;Noorian-Bidgoli, Majid
    • Earthquakes and Structures
    • /
    • v.22 no.3
    • /
    • pp.277-287
    • /
    • 2022
  • The ancient underground cities are a collection of self-supporting spaces that have been manually excavated in the soil or rock in the past. Because these structures have a very high cultural value due to their age, the study of their stability under the influence of natural hazards, such as earthquakes, is very important. In this research, while introducing the underground city of Ouyi Nushabad located in the center of Iran as one of the largest man-made underground cities of the old world, the analysis of dynamic stability is performed. For this purpose, the dynamic stress-displacement analysis has been performed through numerical modeling using the finite element software PLAXIS. At this stage, by simulating the Khorgo earthquake as one of the large-scale earthquakes that occurred in Iran, with a magnitude of 6.9 on the Richter scale, dynamic analysis by time history method has been performed on three selected sections of underground spaces. This study shows that the maximum amount of horizontal and vertical dynamic displacement is 12.9 cm and 17.7 cm, respectively, which was obtained in section 2. The comparison of the results shows that by increasing the cross-sectional area of the excavation, especially the distance between the roof and the floor, in addition to increasing the amount of horizontal and vertical dynamic displacement, the obtained maximum acceleration is intensified compared to the mapping acceleration applied to the model floor. Therefore, preventive actions should be taken to stabilize the excavations in order to prevent damage caused by a possible earthquake.

Lateral impact behaviour of concrete-filled steel tubes with localised pitting corrosion

  • Gen Li;Chao Hou;Luming Shen;Chuan-Chuan Hou
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.615-631
    • /
    • 2023
  • Steel corrosion induces structural deterioration of concrete-filled steel tubes (CFSTs), and any potential extreme action on a corroded CFST would pose a severe threat. This paper presents a comprehensive investigation on the lateral impact behaviour of CFSTs suffering from localised pitting corrosion damage. A refined finite element analysis model is developed for the simulation of locally corroded CFSTs subjected to lateral impact loads, which takes into account the strain rate effects on concrete and steel materials as well as the random nature of corrosion pits, i.e., the distribution patterns and the geometric characteristics. Full-range nonlinear analysis on the lateral impact behaviour in terms of loading and deforming time-history relations, nonlinear material stresses, composite actions, and energy dissipations are presented for CFSTs with no corrosion, uniform corrosion and pitting corrosion, respectively. Localised pitting corrosion is found to pose a more severe deterioration on the lateral impact behaviour of CFSTs due to the plastic deformation concentration, the weakened confinement and the reduction in energy absorption capacity of the steel tube. An extended parametric study is then carried out to identify the influence of the key parameters on the lateral impact behaviour of CFSTs with localised pitting corrosion. Finally, simplified design methods considering the features of pitting corrosion are proposed to predict the dynamic flexural capacity of locally pitted CFSTs subjected to lateral impact loads, and reasonable accuracy is obtained.

Dissipative Replaceable Bracing Connections (DRBrC) for earthquake protection of steel and composite structures

  • Jorge M. Proenca;Luis Calado;Alper Kanyilmaz
    • Steel and Composite Structures
    • /
    • v.46 no.2
    • /
    • pp.237-252
    • /
    • 2023
  • The article describes the development of a novel dissipative bracing connection device (identified by the acronym DRBrC) for concentrically braced frames in steel and composite structures. The origins of the device trace back to the seminal work of Kelly, Skinner and Heine (1972), and, more directly related, to the PIN-INERD device, overcoming some of its limitations and greatly improving the replaceability characteristics. The connection device is composed of a rigid housing, connected to both the brace and the beam-column connection (or just the column), in which the axial force transfer is achieved by four-point bending of a dissipative pin. The experimental validation stages, presented in detail, consisted of a preliminary testing campaign, resulting in successive improvements of the original device design, followed by a systematic parametric testing campaign. That final campaign was devised to study the influence of the constituent materials (S235 and Stainless Steel, for the pin, and S355 and High Strength Steel, for the housing), of the geometry (four-point bending intermediate spans) and of the loading history (constant amplitude or increasing cyclic alternate). The main conclusions point to the most promising DRBrC device configurations, also presenting some suggestions in terms of the replaceability requirements.

Aseismic design concept for underground space based on site response analysis (부지응답해석에 기초한 지하공간 내진설계 개념)

  • Park, Inn-Joon;Yoo, Ji-Hyeung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.3
    • /
    • pp.257-264
    • /
    • 2010
  • This study proposed the aseismic design concept for underground space based on site response analysis and laboratory tests. The results of this study showed that the location of the control points of input motions such as design response spectra and time history of acceleration and the assumption of bedrock properties such as elasticity or rigidity play an important role in aseismic design of underground space. Therefore, the appropriate ground response model among models applying motions such as free surface motion, bedrock motion, or bedrock outcropping motion must be utilized to provide reasonable boundary conditions of underground space under earthquake loading and practical aseismic design.

4D full-field measurements over the entire loading history: Evaluation of different temporal interpolations

  • Ana Vrgoc;Viktor Kosin;Clement Jailin;Benjamin Smaniotto;Zvonimir Tomicevic;Francois Hild
    • Coupled systems mechanics
    • /
    • v.12 no.6
    • /
    • pp.503-517
    • /
    • 2023
  • Standard Digital Volume Correlation (DVC) approaches are based on pattern matching between two reconstructed volumes acquired at different stages. Such frameworks are limited by the number of scans (due to acquisition duration), and time-dependent phenomena can generally not be captured. Projection-based Digital Volume Correlation (P-DVC) measures displacement fields from series of 2D radiographs acquired at different angles and loadings, thus resulting in richer temporal sampling (compared to standard DVC). The sought displacement field is decomposed over a basis of separated variables, namely, temporal and spatial modes. This study utilizes an alternative route in which spatial modes are con-structed via scan-wise DVC, and thus only the temporal amplitudes are sought via P-DVC. This meth-od is applied to a glass fiber mat reinforced polymer specimen containing a machined notch, subjected to in-situ cyclic tension, and imaged via X-Ray Computed Tomography. Different temporal interpolations are exploited. It is shown that utilizing only one DVC displacement field (as spatial mode) was sufficient to properly capture the complex kinematics up to specimen failure.

A Study on the Determination of Reference Parameter for Aircraft Impact Induced Risk Assessment of Nuclear Power Plant (원전의 항공기 충돌 리스크 평가를 위한 대표매개변수 선정 연구)

  • Shin, Sang Shup;Hahm, Daegi;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.437-450
    • /
    • 2014
  • In this study, we developed a methodology to determine the reference parameter for an aircraft impact induced risk assessment of nuclear power plant (NPP) using finite element impact analysis of containment building. The target structure used to develop the method of reference parameter selection is one of the typical Korean PWR type containment buildings. We composed a three-dimensional finite element model of the containment building. The concrete damaged plasticity model was used for the concrete material model. The steels in the tendon, rebar, and liner were modeled using the piecewise-linear stress-strain curves. To evaluate the correlations between structural response and each candidate parameter, we developed Riera's aircraft impact force-time history function with respect to the variation of the loading parameters, i.e., impact velocity and mass of the remaining fuel. For each force-time history, the type of aircraft is assumed to be a Boeing 767 model. The variation ranges of the impact velocity and remaining fuel percentage are 50 to 200m/s, and 30 to 90%, respectively. Four parameters, i.e., kinetic energy, total impulse, maximum impulse, and maximum force are proposed for candidates of the reference parameter. The wellness of the correlation between the reference parameter and structural responses was formulated using the coefficient of determination ($R^2$). From the results, we found that the maximum force showed the highest $R^2$ value in most responses in the materials. The simplicity and intuitiveness of the maximum force parameter are also remarkable compared to the other candidate parameters. Therefore, it can be concluded that the maximum force is the most proper candidate for the reference parameter to assess the aircraft impact induced risk of NPPs.