• Title/Summary/Keyword: loading direction

Search Result 745, Processing Time 0.03 seconds

Finite Element Stress Analysis of Implant Prosthesis according to Position and Direction of Load (하중의 위치 및 경사에 따른 임플랜트 보철의 유한요소법적 응력분석)

  • Bae, Sook-Jin;Chung, Chae-Heon;Jeong, Seung-Mi
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.4
    • /
    • pp.257-268
    • /
    • 2003
  • The purpose of this study was to assess the loading distributing characteristics of implant prosthesis according to position and direction of load, under vertical and inclined loading using FEA analysis. The finite element model was designed according to standard fixture (4.1mm restorative component x 11.5mm length). The crown for mandibular first molar was made using UCLA abutment. Each three-dimensional finite element model was created with the physical properties of the implant and surrounding bone. This study simulated loads of 200N at the central fossa in a vertical direction (loading condition A), 200N at the outside point of the central fossa with resin filling into screw hole in a vertical direction (loading condition B), 200N at the centric usp in a $15^{\circ}$ inward oblique direction (loading condition C), 200N at the in a $30^{\circ}$ inward oblique direction (loading condition D) or 200N at the centric cusp in a $30^{\circ}$ outward oblique direction (loading condition E) individually. Von Mises stresses were recorded and compared in the supporting bone, fixture, and abutment screw. The following results have been made based on this study: 1. Stresses were concentrated mainly at the ridge crest around implant in both vertical and oblique loading but stresses in the cancellous bone were low in both vertical and oblique loading. 2. Bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. The magnitude of the stress was greater with the oblique loading than with the vertical loading. 3. An offset of the vertical occlusal force in the buccolingual direction relative to the implant axis gave rise to increased bending of the implant. 4. The relative positions of the resultant line of force from occlusal contact and the center of rotation seems to be more important. 5. The magnitude of the stress in the supporting bone, fixture and abutment screw was greater with the outward oblique loading than with the inward oblique loading and was the greatest under loading at the centric cusp in a $30^{\circ}$ outward oblique direction. Conclusively, this study provides evidence that bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. But it seems to be more important that how long is the distance from center of rotation of the implant itself to the resultant line of force from occlusal contact(leverage). The goal of improving implants should be to avoid bending of the implant.

Finite Element Stress Analysis of Implant Prosthesis of Internal Connection System According to Position and Direction of Load (임플랜트-지대주의 내측연결 시스템에서 하중의 위치 및 경사에 따른 임플랜트 보철의 유한요소 응력분석)

  • Jang, Jong-Seok;Jeong, Yong-Tae;Chung, Chae-Heon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.21 no.1
    • /
    • pp.1-14
    • /
    • 2005
  • The purpose of this study was to assess the loading distributing characteristics of implant prosthesis of internal connection system(ITI system) according to position and direction of load, under vertical and inclined loading using finite element analysis (FEA). The finite element model of a synOcta implant and a solid abutment with $8^{\circ}$ internal conical joint used by the ITI implant was constructed. The gold crown for mandibular first molar was made on solid abutment. Each three-dimensional finite element model was created with the physical properties of the implant and surrounding bone. This study simulated loads of 200N at the central fossa in a vertical direction (loading condition A), 200N at the outside point of the central fossa with resin filling into screw hole in a vertical direction (loading condition B), 200N at the centric cusp in a $15^{\circ}$ inward oblique direction (loading condition C), 200N at the in a $30^{\circ}$ inward oblique direction (loading condition D) or 200N at the centric cusp in a $30^{\circ}$ outward oblique direction (loading condition E) individually. Von Mises stresses were recorded and compared in the supporting bone, fixture, and abutment. The following results have been made based on this study: 1. Stresses were concentrated mainly at the ridge crest around implant under both vertical and oblique loading but stresses in the cancellous bone were low under both vertical and oblique loading. 2. Bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. The magnitude of the stress was greater with the oblique loading than with the vertical loading. 3. An offset of the vertical occlusal force in the buccolingual direction relative to the implant axis gave rise to increased bending of the implant. So, the relative positions of the resultant line of force from occlusal contact and the center of rotation seems to be more important. 4. In this internal conical joint, vertical and oblique loads were resisted mainly by the implant-abutment joint at the screw level and by the implant collar. Conclusively, It seems to be more important that how long the distance is from center of rotation of the implant itself to the resultant line of force from occlusal contact (leverage). In a morse taper implant, vertical and oblique loads are resisted mainly by the implant-abutment joint at the screw level and by the implant collar. This type of implant-abutment connection can also distribute forces deeper within the implant and shield the retention screw from excessive loading. Lateral forces are transmitted directly to the walls of the implant and the implant abutment mating bevels, providing greater resistance to interface opening.

Evaluation of Dowel Bearing Strength of Structural Composite Lumber(SCL) on the Effect of Moisture Content

  • Oh, Sei Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.61-69
    • /
    • 2003
  • This study investigated the effect of moisture content and loading direction on dowel bearing strength of two types of SCL. Dowel bearing tests of LVL and PSL were conducted with two different MC level, 7.5% and 19%, and two different oriention, L-direction(loading parallel to grain) and X-direction(loading perpendicular to grain). Most of specimens showed typical load-deformation curves and intersected 5% offset line. Failure modes were classified into two categories; spliting(for L-direction specimens) and peeling(for X-direction specimens). Dowel bearing strength generally decreased with increasing MC. The decreasing rate was more significant in X-directon. ESG also decreased with increasing MC, and the ratio of ESG of 7.5% versus 19% was about 1.47. Dowel bearing strength of LVL and PSL in L-direction was higher than that of X-direction. This results indicated that MC and loading orientation had a significant effect on dowel bearing strength of SCL. The average dowel bearing strength of LVL were higher than that of PSL in each loading direction. Two types of probability distribution model were chosen to quantify strength distribution, normal and 2-parameter weibull distribution. The two models showed good agreement with the data, especially in lower tail of the cumulative distribution. Normal and 2-parameter weibull distribution seemed to proper model of the dowel bearing strength for each MC levels.

Dynamic Compressive Creep of Extruded Ultra-High Molecular Weight Polyethylene

  • Lee, Kwon-Yong;David Pienkowski;Lee, Sungjae
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1332-1338
    • /
    • 2003
  • To estimate the true wear rate of polyethylene acetabular cups used in total hip arthroplasty, the dynamic compressive creep deformation of ultra-high molecular weight polyethylene (UHMWPE) was quantified as a function of time, load amplitude, and radial location of the specimen in the extruded rod stock. These data were also compared with the creep behavior of polyethylene observed under static loading. Total creep strains under dynamic loading were only 64%, 70%, and 61% of the total creep strains under static loading at the same maximum pressures of 2 MPa,4 MPa, and 8 MPa, respectively. Specimens cut from the periphery of the rod stock demonstrated more creep than those cut from the center when they were compressed in a direction parallel to the extrusion direction (vertical loading) whereas the opposite was observed when specimens were compressed in a direction perpendicular to the extrusion direction (transverse loading). These findings show that creep deformation of UHMWPE depends upon the orientation of the crystalline lamellae.

Characteristics of Fatigue Crack Propagations with Respect to Loading Directions in Butt-Welded Steel Plates with the Same Direction of Rolling and Welding Bead (압연 및 용접방향이 같은 맞대기 용접강판의 하중방향에 따른 피로균열 진전특성)

  • Lee Yong-Bok;Kim Sung-Yeup;Oh Byung-Duck
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.37-42
    • /
    • 2005
  • Most of the welding steel plate structures have complicated mechanical problems such as rolling directional characteristics and residual stresses caused by manufacturing process. For the enhancement of reliability and safety in those structures, therefore, a systematic investigation is required. SS400 steel plate used for common structures was selected and welded by FCAW butt-welding process for this study, and then it was studied experimently about characteristics of fatigue crack propagations with respect to rolling direction and welding residual stress of welded steel plates. When the angles between rolling direction and tensile loading direction in base material are increased, their ultimate strength not show a significant difference, but yielding strength are increased and elongations are decreased uniformly. It is also shown that fatigue crack growth rate can be increased from those results. When the angles between welding bead direction and loading direction in welded material are increase, fatigue crack growth rate of them are decreased and influenced uniformly according to the conditions of residual stress distribution. In these results, it is shown that the welded steel plate structures are needed to harmonize distributed welding residual stress, rolling direction and loading direction fur the improvement of safety and endurance in manufacture of their structures.

Investigation on the Experimental Results of Anisotropic Fracture Behavior for UHSS 1470 MPa Grade Sheets (초고강도 1470 MPa급 판재의 파단 이방성 실험 결과에 관한 연구)

  • J. Lee;H. J. Bong;D. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.2
    • /
    • pp.87-91
    • /
    • 2023
  • In the present work, the ductile fracture behaviors of ultra-high strength steel sheets along the different loading directions are investigated under various loading paths. Three loading paths, i.e., in-plane shear, uniaxial tension, plane strain tension deformations, are considered, and the corresponding specimens are described. The experiments are conducted using the digital image correlation (DIC) system to analyze the strain at the onset of the fracture. The experimental results show that the loading path for each specimen sample is linear, and different values of the fracture strains for the loading direction from the plane strain tension are observed. The ductile fracture model of the modified Mohr-Coulomb (MMC) is constructed based on the experimental data and evaluated along the rolling direction and transverse direction under various loading paths.

Characteristics of fatigue crack propagations with respect to the angles between rolling and tensile loading directions of steel plates (강판의 압연 방향과 인장하중 방향의 상대 각도에 따른 피로 균열 진전 특성)

  • Lee Yong-Bok;Oh Byung-Duck
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.74-80
    • /
    • 2005
  • Steel plates used for common structures are manufactured by rolling processes in general. The rolling direction traces generated during the processes have significant influences on mechanical properties and fatigue behavior of the plates. The objective of present study is to investigate those directional characteristics for the enhancement of steel structure safety. SS400 steel plates of 3 mm thickness are tested in this study, When the angles between the tensile loading direction and the rolling direction of the plates are increased, their yield strengths are increased and elongations are rather decreased. It is also shown that fatigue crack growth rates in the plates can be increased according to the changes of those mechanical characteristics. For the safety of the structures, therefore, it is critical to decrease the angles between the rolling direction and the tensile loading direction.

The Effects of Gaze Direction on the Stability and Coordination of the Lower Limb Joint during Drop-Landing (드롭랜딩 시 시선 방향의 차이가 하지관절의 안정성과 협응에 미치는 영향)

  • Kim, Kewwan;Ahn, Seji
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.2
    • /
    • pp.126-132
    • /
    • 2021
  • Objective: The purpose of this study was to investigate how three gaze directions (bottom, normal, up) affects the coordination and stability of the lower limb during drop landing. Method: 20 female adults (age: 21.1±1.1 yrs, height: 165.7±6.2 cm, weight: 59.4±5.9 kg) participated in this study. Participants performed single-leg drop landing task on a 30 cm height and 20 cm horizontal distance away from the force plate. Kinetic and kinematic data were obtained using 8 motion capture cameras and 1 force plates and leg stiffness, loading rate, DPSI were calculated. All statistical analyses were computed by using SPSS 25.0 program. One-way repeated ANOVA was used to compared the differences between the variables in the direction of gaze. To locate the differences, Bonferroni post hoc was applied if significance was observed. Results: The hip flexion angle and ankle plantar flexion angle were significantly smaller when the gaze direction was up. In the kinetic variables, when the gaze direction was up, the loading rate and DPSI were significantly higher than those of other gaze directions. Conclusion: Our results indicated that decreased hip and ankle flexion angles, increased loading rate and DPSI when the gaze direction was up. This suggests that the difference in visual information can increase the risk of injury to the lower limb during landing.

Fatigue Behavior with Respect to Rolling and Residual Stress in Butt-welded Steel Plate (맞대기 용접 강판재에서 압연 및 잔류응력에 의한 피로거동)

  • Lee Yong-Bok;Oh Byung-Duck;Kim Sung-Yeup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7 s.250
    • /
    • pp.826-832
    • /
    • 2006
  • For the improvement of safety and endurance in welded steel structure, it is needed to consider welding residual stress distribution and rolling directional characteristics of materials. In this study, it was investigated experimentally about characteristics of fatigue crack propagation according to welding residual stress and rolling in FCAW(flux cored arc welding) butt-jointed steel plates. SS400 steel plates of 3mm thickness were selected and tested for this study. When the angles between tensile loading direction and rolling direction in welded materials are increased from $0^{\circ}\;to\;90^{\circ}$, their fatigue crack propagation rates are increased. These results are same as predicted increments of fatigue crack propagation rate when stress ratio is increased from 0 to 0.5. When the angles of rolling direction and welding direction to tensile loading direction are $0^{\circ}\;and\;90^{\circ}$ respectively, fatigue crack propagation rate in welded material is lowest.

Effect of loading direction on the low cycle fatigue behavior of rolled AZ31 Mg alloy (AZ31 Mg 합금 압연 판재에서 하중방향에 따른 저주기 피로특성)

  • Park, S.H.;Hong, S.G.;Lee, B.H.;Lee, C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.77-80
    • /
    • 2008
  • Low-cycle fatigue (LCF) tests were carried out to investigate the effect of loading direction on the cyclic deformation behavior and fatigue resistance of rolled AZ31 magnesium alloy. The as-received alloy showed a strong basal texture indicating that the most of basal planes of hexagonal close-packed structure were located parallel to the rolling direction. Two types of specimens whose loading directions were oriented parallel (RD) and vertical (ND) to the rolling direction. respectively, were used for the comparison. It was found that RD specimens yielded at much lower stresses during compression, while vice versa for the ND specimens, which was mainly attributed to the formation of primary twins. This anisotropic deformation behavior resulted in the different mean stresses during the cycling of RD and ND specimens, affecting the fatigue resistance of two specimens. The ND specimen showed a superior fatigue resistance as compared to the RD specimen under strain-controlled condition.

  • PDF