• 제목/요약/키워드: loading capability

검색결과 242건 처리시간 0.024초

염색폐수 처리성능에 대한 호기성 고정 및 유동층 생물막공법과 회전매체를 가진 완전혼합 활성슬러지 공법의 비교연구 (A comparative study of dyeing wastewater treatment capability for Aerobic Packed/Fluidized-Bed and Moving Media Complete Mixing Activated Sludge system)

  • 김홍태;김규창
    • 한국환경과학회지
    • /
    • 제8권4호
    • /
    • pp.525-532
    • /
    • 1999
  • This study was conducted to evaluate capability of dyeing wastewater treatment for 3 type reactors. These reactors were Packed Bed Reactor(PBR), Fluidized Bed reactor(FBR) and Moving Media Complete Mixing Activated Sludge reactor(MMCMAS). Experiments of PBR and FBR were performed by various packing ratios and organic loading rates, experiments of MMCMAS were performed by various organic loading rates. In order to obtain ${SBOD}_5$ removal efficiencies of more than 90%, the F/Mv ratios of PBR, FBR, MMCMAS were 0.11 kgBOD/kgMLVSS$\cdot$d, 0.12 kgBOD/kgMLVSS$\cdot$d, and 0.37 kgBOD/kgMLSS$\cdot$d, respectively. So MMCMAS system which has more active microorganisms showed better capability of organic removal and also stronger dynamic and shock loadings than those of PBR and FBR. In PBR and FBR, the media packing ratio of 20% showed better performance of organic matters removal effciencies than 10% and 30%, but sludge production rate at media packing ratio of 30% was relatively lower than that of 10% and 20%. When more than 90% organic matters removal efficiency was obtained, the ratios of attached biomass to total biomass at PBR, FBR, MMCMAS were 89~99%, 87~98%, and 54~80%, respectively. The ratio of attached biomass to total biomass was low in MMCMAS. This was formation of thin biofilm due to shear force between rotaing disc and water. The average sludge production rates(kgVSS/kgBODrem.) of PBR, FBR and MMCMAS were 0.20, 0.29 and 0.54, respectively.

  • PDF

교량 내하력 평가를 위한 정적재하시험 및 동적재하시험 특성 (Characteristics of Static Loading and Dynamic Loading Tests for Bridge Capability)

  • 이상훈
    • 한국재난정보학회 논문집
    • /
    • 제16권4호
    • /
    • pp.638-649
    • /
    • 2020
  • 연구목적: 본 연구에서는 공용년수 20년이 경과된 콘크리트 단순 슬래브교를 대상으로 하여 대상교량 구조물의 내하성능을 평가하는 것을 목적으로 하였다. 연구방법: 정적재하시험 및 동적재해시험을 수행함으로써 변위, 변형율, 충격계수, 고유진동수 값을 실측하였으며, 해석방법을 통해 평가하였다. 연구결과: 본 연구를 통해 나타난 주요 결과는 다음과 같다. 첫째, S1 최대 변위 및 최대 변형률은 각각 2.917 mm, 44.720 𝜇ε(인장), -13.760 𝜇ε(압축)로 평가되었으며, S2 최대 변위 및 최대 변형률은 각각 2.100 mm, 4.870 𝜇ε(인장)로 나타났다. 둘째, 최대 실측충격계수는 S1 A-A단면에서 0.242로 나타났으며, 최대 실측충격계수는 S2 C-C단면에서 0.198로 나타났다. 셋째, 고유진동수를 해석결과, 6.086Hz로 평가되었고, 측정결과 6.152Hz-6.738Hz의 범위로 나타났다. 결론: 시험대상 교량은 설계하중에 대하여 양호한 거동 및 특성을 보이는 것으로 평가할 수 있다.

Cyclic behavior of extended end-plate connections with shape memory alloy bolts

  • Fanaie, Nader;Monfared, Morteza N.
    • Structural Engineering and Mechanics
    • /
    • 제60권3호
    • /
    • pp.507-527
    • /
    • 2016
  • The use of shape memory alloys (SMAs) has been seriously considered in seismic engineering due to their capabilities, such as the ability to tolerate cyclic deformations and dissipate energy. Five 3-D extended end-plate connection models have been created, including one conventional connection and four connections with Nitinol bolts of four different prestress forces. Their cyclic behaviors have been investigated using the finite element method software ANSYS. Subsequently, the moment-rotation responses of the connections have been derived by subjecting them to cyclic loading based on SAC protocol. The results obtained in this research indicate that the conventional connections show residual deformations despite their high ductility and very good energy dissipation; therefore, they cannot be repaired after loading. However, while having good energy dissipation and high ductility, the connections equipped with Nitinol bolts have good recentering capability. Moreover, a connection with the mentioned specifications has been modeled, except that only the external bolts replaced with SMA bolts and assessed for seismic loading. The suggested connection shows high ductility, medium energy dissipation and very good recentering. The main objective of this research is to concentrate the deformations caused by cyclic loading on the connection in order to form super-elastic hinge in the connection by the deformations of the shape memory alloy bolts.

Stresses around an underground opening with sharp corners due to non-symmetrical surface load

  • Karinski, Y.S.;Yankelevsky, D.Z.;Antes, M.Y.
    • Structural Engineering and Mechanics
    • /
    • 제31권6호
    • /
    • pp.679-696
    • /
    • 2009
  • The paper aims at analyzing the stress distribution around an underground opening that is subjected to non-symmetrical surface loading with emphasis on opening shapes with sharp corners and the stress concentrations developed at these locations. The analysis is performed utilizing the BIE method coupled with the Neumann's series. In order to implement this approach, the special recurrent relations for half plane were proven and the modified Shanks transform was incorporated to accelerate the series convergence. To demonstrate the capability of the developed approach, a horseshoe shape opening with sharp corners was investigated and the location and magnitude of the maximum hoop stress was calculated. The dependence of the maximum hoop stress location on the parameters of the surface loading (degree of asymmetry, size of loaded area) and of the opening (the opening height) was studied. It was found that the absolute magnitude of the maximum hoop stress (for all possible surface loading locations) is developed at the roof points when the opening height/width ratio is relatively large or when the pressure loading area is relatively narrow (compared to the roof arch radius), and contrarily, when the opening height/width ratio is relatively small or when the surface pressure is applied to a relatively wide area, the absolute magnitude of the maximum hoop stress is developed at the bottom sharp corner points.

Experimental behaviour of circular concrete filled steel tube columns under lateral cyclic loading

  • Cao, Vui Van;Vo, Cuong Trung;Nguyen, Phuoc Trong;Ashraf, Mahmud
    • Earthquakes and Structures
    • /
    • 제21권5호
    • /
    • pp.445-460
    • /
    • 2021
  • This study experimentally explored the behaviour of 12 concrete filled steel tube (CFST) and steel tube columns subjected to lateral cyclic loading. The L/D ratio was 12.3 while D/t ratios were 45.4, 37.8 and 32.4, classifying these 12 specimens into 3 groups. Each group included 3 CFST and 1 steel tube columns and were tested to failure. The experimental results indicated that CFST specimens reached the state of 'collapse prevention' (drift 4%) prior to the occurrence of local buckling. Strength degradation of CFST specimens did not occur up to the failure by buckling. This showed the favourable characteristic of CFST columns in preventing collapse of structures subjected to earthquakes. The high energy absorption capability in the post collapse limit state was appropriate for dissipating energy in structures. Compared to steel tube columns, CFST columns delayed local buckling and prevented inward buckling. Consequently, CFST columns exhibited their outstanding seismic performance in terms of the increased ultimate resistance, capacity to sustain 2-3 additional load cycles and significantly higher drift. A simple and reasonably accurate model was proposed to predict the ultimate strength of CFST columns under lateral cyclic loading.

고부하 유기성 폐수처리를 위한 분리막 결합형 순산소 고효율 포기장치의 총괄 산소전달효율 평가 (Comparison of Overall Oxygen Transfer Coefficient in the Membrane Coupled High Performance Reactor for a High Organic Loading Wastewater Treatment)

  • 강범희;임경호;이상민
    • 한국물환경학회지
    • /
    • 제26권1호
    • /
    • pp.81-88
    • /
    • 2010
  • This study was conducted to find the capability of comparison of overall oxygen transfer coefficient in the membrane coupled high performance reactor (MPHCR) in treating high organic loading wastewater. Effluent quality had been analyzed while the influent organic loading rate was changed from 2 to $7kg\;COD/m^3{\cdot}day$. The oxygen transfer coefficients had been investigated using two-phase nozzle for operating variables which were internal circulation flowrate (5~8 L/min), air flow rate (0.0125~0.2 L/min), liquid temperature ($10{\sim}20^{\circ}C$), and pure-oxygen flow rate (0.0125~0.2 L/min). The overall oxygen transfer coefficient was increased with flowrate of internal circulation and air and high temperature. Especially, internal circulation flow rate showed distinct effect on overall oxygen transfer coefficient due to an increase of gas holdup and air-liquid contract area by two-phase nozzle. In the high range of organic loading rate from 4 to $7kg\;COD/m^3{\cdot}day$, the removable efficiency of COD was 91%. Conventional activated sludge process usually treat organic loading from 0.32 to $0.64kg\;COD/m^3{\cdot}day$ however, the MPHCR can treat 10 to 20 times higher if it would be compared to the conventional activated sludge process. Foaming problem often happened and caused biomass wash out of the reactor, therefore, the foaming should be controlled for the enhanced operation.

화공약품 탱크 적재 문제의 최소 여유량 탱크 적재 알고리즘 (Minimum Margin Tank Loading Algorithm for Chemical Tank Loading Problem)

  • 이상운
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권2호
    • /
    • pp.131-136
    • /
    • 2015
  • 화공약품 탱크 적재 문제는 다항시간으로 해를 찾을 수 있는 알고리즘이 알려져 있지 않아 NP-완전으로 분류된 난제이다. 화공약품 탱크 적재 문제는 상자 포장 문제의 일종으로, Gu$\acute{e}$ret et al.은 $O(m^4)$ 수행 복잡도의 선형계획법으로 해를 얻고자 하였다. 반면에, 본 논문에서는 최소 여유량을 가진 탱크에 적재하는 규칙인 O(m) 복잡도의 알고리즘을 제안하였다. 제안된 방법은 첫 번째로 잔여량이 있는 탱크에 해당 화공약품을 적재하였다. 다음으로, 남은 화공약품을 적재할 수 있는 최소 여유량을 가진 탱크에 해당 화공약품을 적재하였다. 실험 결과, 제안된 알고리즘은 NP-완전 문제인 화공약품 적재 문제에 대해 선형계획법의 $O(m^4)$를 O(m)으로 단축시켰다.

숯 합지 및 내첨지의 가스흡착 성능 (Charcoal Application to Paper and Analysis of Gas Absorption Capability)

  • 고재형;정진모;민경은;이동녕;박종문;김병로
    • 펄프종이기술
    • /
    • 제40권1호
    • /
    • pp.29-34
    • /
    • 2008
  • The charcoal has been used not only as fuel but also as human health care material since it was used. Charcoal's performances were generally investigated in aspects of energy efficiency and caloric values. This study was conducted in order to increase charcoal's application area and to develop functional paper. Five types of charcoal were used on a basis of gas absorption properties from previous study. Handsheets were made by two methods by internal loading and surface spray on interlayer. Strength properties of internal loading and interlayer spray handsheets were decreased as the charcoal loading increased. Ethylene gas absorption property was higher in both of oak's black charcoal and white charcoal than others. In terms of strength, 5-10% charcoal loading was efficient. Above 10% loading, a rate of strength decrease was higher than that of ethylene gas absorption rate. Formaldehyde absorption property was higher at both of oak's black charcoal and mixed charcoal than others. However, to guarantee enough charcoal loading should be higher than 95 $g/m^2$ for sufficient formaldehyde absorption.

Physiologically Based Pharmacokinetic (PBPK) Modeling in Neurotoxicology

  • Kim, Chung-Sim
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1995년도 제3회 추계심포지움
    • /
    • pp.135-136
    • /
    • 1995
  • Resent advances in computer technology have introduced a sophisticated capability for computing the biological fate of toxicants in a biological system. This methodology, which has drastically altered risk assessment skill in toxicology, is designed using all the mechanistic information, and all claim better accuracy with extrapolating capability Iron animal to people than conventional pharmacokinetic methods. Biologically based mathematical models in which the specific mechanistic steps governing tissue disposition(pharmacokinetics) and toxic action (pharmacodynamics) of chemicals are constructed in quantitative terms by a set of equations loading to prediction of the outcome of specific toxicological experiments by computer simulation. pharmacokinetic and pharmacodynamic models are useful in risk assessment because their mechanistic biological basis permits the high-to-low dose, route to route and interspecies extrapolation of the tissue disposition and toxic action of chemicals.

  • PDF

Classification and visualization of primary trabecular bone in lumbar vertebrae

  • Basaruddin, Khairul Salleh;Omori, Junya;Takano, Naoki;Nakano, Takayoshi
    • Advances in biomechanics and applications
    • /
    • 제1권2호
    • /
    • pp.111-126
    • /
    • 2014
  • The microarchitecture of trabecular bone plays a significant role in mechanical strength due to its load-bearing capability. However, the complexity of trabecular microarchitecture hinders the evaluation of its morphological characteristics. We therefore propose a new classification method based on static multiscale theory and dynamic finite element method (FEM) analysis to visualize a three-dimensional (3D) trabecular network for investigating the influence of trabecular microarchitecture on load-bearing capability. This method is applied to human vertebral trabecular bone images obtained by micro-computed tomography (micro-CT) through which primary trabecular bone is successfully visualized and extracted from a highly complicated microarchitecture. The morphological features were then analyzed by viewing the percolation of load pathways in the primary trabecular bone by using the stress wave propagation method analyzed under impact loading. We demonstrate that the present method is effective for describing the morphology of trabecular bone and has the potential for morphometric measurement applications.