• Title/Summary/Keyword: loading and unloading

Search Result 622, Processing Time 0.023 seconds

Accurrate Position Control of Pneumatic Manipulator Using On/Off Valves (On/Off 밸브를 이용한 공압 매니퓰레이터의 고정도 위치제어)

  • Pyo Sung Man;Ahn Kyoung Kwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.2
    • /
    • pp.103-108
    • /
    • 2005
  • Loading/Unloading task in the real industry is performed by crane, but most of the loading/unloading task with the weight of 5kg∼30kg is done by human workers and this kind of work causes industrial disaster of workers. Therefore it is necessary to develop low cost loading/unloading manipulator system to prevent this kind of industrial accidents. This paper is concerned with the design and fabrication of 2 axis pneumatic manipulators using on/off solenoid valves and accurate position control without respect to the external load and low damping in the pneumatic rotary actuator. To overcome the change of external load, switching of control parameter using LVQNN (Learning Vector Quantization Neural Network) is newly applied, which estimates the external loads in the pneumatic cylinder. As an underlying controller, a state feedback controller using position, velocity and acceleration is applied to the switching control system. The effectiveness of the proposed control algorithms are demonstrated through experiments of pneumatic cylinder with various loads.

The Effect of Cyclic Loading History on the Creep of $SiC_f/Si_3N_4$ Fiber-reinforced Composite (사이클 하중이력이 $SiC_f/Si_3N_4섬유강화 복합재료의 크리프에 미치는 영향)

  • 박용환
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.35-40
    • /
    • 2000
  • The influence of cyclic loading history on the creep behavior of the 30 vol% hot-pressed $SiC_f/Si_3N_4copmposite was experimentally investigated at $1200^{\circ}C$. The duration of loading/unloading had great effects on the creep behaviors. The short term duration cyclic loading history test results showed significant reduction in the primary and steady-state creep rates. For example, 300sec loading/300sec unloading history resulted in 70% lower steady-state creep rate than that of the continuous loading. However the long term duration cyclic loading history test results showed little change in creep rates compared to those of the continuous one. The reason for the significant change in the short term duration cycles was estimated due to the change in the stress redistribution between the fiber and matrix during the creep recovery in the primary stage.

  • PDF

J-R Curve Evaluation According to the Crack Length Measurement Techniques Under Reverse Cyclic Loading (역사이클하중하에서의 균열길이 측정법에 따른 파괴저항곡선의 평가)

  • 원종일;우흥식;석창성
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.96-101
    • /
    • 1998
  • J-R curve tests were performed on 1T compact specimens of SA516 Gr. 70 carbon steels under reverse cyclic loading. A Direct-Current Potential Drop (DCPD) method, one of the nondestructive techniques to detect flaw of structure, is being increasingly used for monitoring crack initiation and stable crack growth in typical fracture mechanics specimens for J-R testing. In many aspects this method is simpler than the unloading compliance method. The objective of this paper is to evaluate the J-R Curve according to the crack length measurement techniques under reverse cyclic loading. In order to prove the reliability and repeatability of the DCPD method, the crack length measured by using DCPD method was compared to one determined from unloading compliance. Consequently, this DCPD method correlated well with J-R curves and crack extension measurements determined from unloading compliance method.

  • PDF

An analytical model for PVC-FRP confined reinforced concrete columns under low cyclic loading

  • Fang, Yuan;Yu, Feng;Chen, Anchun;Wang, Shilong;Xu, Guoshi
    • Structural Engineering and Mechanics
    • /
    • v.77 no.2
    • /
    • pp.179-196
    • /
    • 2021
  • Experimental investigations on the seismic behaviors of the PVC-FRP Confined Reinforced Concrete (PFCRC) columns under low cyclic loading are carried out and two variable parameters including CFRP strips spacing and axial compression ratio are considered. The PFCRC column finally fails by bending and is characterized by the crushing of concrete and yielding of the longitudinal reinforcement, and the column with a high axial compression ratio is also accompanied by the cracking of the PVC tube and the fracture of CFRP strips. The hysteretic curves and skeleton curves of the columns are obtained from the experimental data. With the increase of axial compression ratio, the stiffness degradation rate accelerates and the ductility decreases. With the decrease of CFRP strips spacing, the unloading sections of the skeleton curves become steep and the ductility reduces significantly. On the basis of fiber model method, a numerical analysis approach for predicting the skeleton curves of the PFCRC columns is developed. Additionally, a simplified skeleton curve including the elastic stage, strengthening stage and unloading stage is suggested depending on the geometric drawing method. Moreover, the loading and unloading rules of the PFCRC columns are revealed by analyzing the features of the skeleton curves. The quantitative expressions that are used to predict the unloading stiffness of the specimens in each stage are proposed. Eventually, an analytical model for the PFCRC columns under low cyclic loading is established and it agrees well with test data.

Economic analysis of the loading-unloading and automatic weighing systems in laver aquaculture industry (양식장 물김 이송 및 중량 자동측정 시스템 개발의 경제성 분석 연구)

  • Dae-Hyon KIM;Eun-Bi MIN;Tae-Jong KANG;Doo-Jin HWANG
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.2
    • /
    • pp.181-187
    • /
    • 2023
  • Laver aquaculture, which occupies a large proportion in the aquaculture industry in Korea, is still highly dependent on human labor. Therefore, it is necessary to study the development of an automatic system to improve the working environment and increase the efficiency of aquaculture production systems. The purpose of this study is to evaluate the economic feasibility of an improved system in a study for the loading-unloading and automatic weighing systems in laver aquaculture industry. Economic analysis of the developed unloading and automatic weighing system were implemented under various conditions to calculate more accurate benefits and costs. As a result of this study, the economic feasibility was found to be very high in the three models: net present value (NPV), benefit-cost ratio (B/C), internal rate of return (IRR). Moreover, the results of sensitivity analysis showed that the economical efficiency of the automatic loading, unloading, and weighing system in laver aquaculture was very high.

Simulation of Container Leading/Unloading Operation Using Simulation Based Design Methodology (시뮬레이션 기반의 설계기법을 이용한 컨테이너 적.양하 시뮬레이션)

  • 김홍태;이순섭;이종갑;장동식
    • Journal of the Korea Society for Simulation
    • /
    • v.10 no.2
    • /
    • pp.33-46
    • /
    • 2001
  • Recently, the usage of containers in marine transportation is rapidly increasing. The problem of ship stability is important because of its direct influence to the loss of the human-life, ship, and merchandise. However, the assessment for ship stability during container loading/unloading in port is dependent on human experience only. On the other hand, the emerging information and communication technologies of shipbuilding industrial environments are rapidly changing. To respond to the situation, a new paradigm has been matured with new concepts such as the concrete method. Especially, all the efforts are shown to be concentrated to realize the concept of Simulation Based Design(SBD) based on three dimensional Computer Aided Design(CAD) model. In this paper, ship model-based simulation methodology for design and operation of ship is suggested, and for the verification of suggested methodology, the system for stability assessment of ship during container loading/unloading was developed using ENVISION, a general-purpose simulation system. The developed system consists of geometric modeling subsystem, basic calculation subsystem, and Computer Aided Engineering(CAE) subsystem. In addition, interface to CAE/CAD /simulation system such as SIKOB and ENVISION is provided.

  • PDF

Experiments for Material Properties of Magnesium Metal Sheet at Elevated Temperatures (마그네슘 판재의 고온 물성치 실험)

  • Choi, E.K.;Lee, S.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.378-381
    • /
    • 2009
  • In this study, the repetitive loading-unloading tensile tests with AZ31B magnesium sheet metal have been conducted under various elevated temperatures to check out how the Young's moduli of the sheets evolve during the plastic deformation. The loading-unloading tests have been carried out at every 1% of strain increment. With the tested results, some damage parameters of magnesium sheets based on the Lemaitre's continuum damage theory could be calculated at room temperature, $100^{\circ}C$, $150^{\circ}C$, $200^{\circ}C$ and $250^{\circ}C$. It has been shown that the critical damage parameters obtained in all temperature conditions are within the range of 0.12 to 0.18.

  • PDF

Damage characterization of hard-brittle rocks under cyclic loading based on energy dissipation and acoustic emission characteristics

  • Li, Cheng J.;Lou, Pei J.;Xu, Ying
    • Geomechanics and Engineering
    • /
    • v.31 no.4
    • /
    • pp.365-373
    • /
    • 2022
  • In order to investigate the damage evolution law of rock specimens under cyclic loading, cyclic loading tests under constant loads with different amplitudes were carried out on limestone specimens with high strength and brittleness values using acoustic emission (AE) technology and the energy evolution and AE characteristics were evaluated. Based on dissipated energy density and AE counts, the damage variable of specimen was characterized and two damage evolution processes were analyzed and compared. The obtained results showed that the change of AE counts was closely related to radial deformation. Higher cyclic loading values result in more significant radial strain of limestone specimen and larger accumulative AE counts of cyclic loading segment, which indicated Felicity effect. Regarding dissipated energy density, the damage of limestone specimen was defined without considering the influence of radial deformation, which made the damage value of cyclic loading segment higher at lower amplitude loads. The damage of cyclic loading segment was increased with the magnitude of load. When dissipated energy density was applied to define damage, the damage value at unloading segment was smaller than that of AE counts. Under higher cyclic loading values, rocks show obvious damage during both loading and unloading processes. Therefore, during deep rock excavation, the damages caused by the deformation recovery of unloading rocks could not be ignored when considering the damage caused by abutment pressure.

Damage Characteristics of Rocks by Uniaxial Compression and Cyclic Loading-Unloading Test (일축압축시험과 반복재하시험을 이용한 암석의 손상특성 분석)

  • Jeong, Gyn-Young;Jang, Hyun-Sic;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.31 no.2
    • /
    • pp.149-163
    • /
    • 2021
  • Damage characteristics of granite, marble and sandstone whose properties were different were investigated by uniaxial compression test and cyclic loading-unloading test. Strength, elastic constants and damage threshold stresses were measured by uniaxial compression test and were compared with those measured by cyclic loading-unloading test. Average rock strengths measured by cyclic loading-unloading test were either lower than or similar with those measured by uniaxial compression test. Rocks with high strength and low porosity were more sensitive to fatigue than that with low strength and high porosity. Although permanent strains caused by cyclic loading-unloading were different according to rock types, they could be good indicators representing damage characteristics of rock. Damage threshold stress of granite and marble might be measured from stress-permanent strain curves. Acoustic emissions were measured during both tests and felicity ratios which represented damage characteristics of rocks were calculated. Felicity ratio of sandstone which was weak in strength and highly porous could not be calculated because of very few measurements of acoustic emissions. On the other hand, damage threshold could be predicted from felicity ratios of granite and marble which were brittle and low in porosity. The deformation behaviors and damage characteristics of rock mass could be investigated if additional tests for various rock types were performed.

A Study on the Baggage Allocation Method of Passenger-Baggage Hybrid Train (여객-화물 복합열차의 화물 배치방법에 관한 연구)

  • Choi, Yong Hoon;Shin, Sang Hoon;Han, Gee Pyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3426-3433
    • /
    • 2015
  • Three baggage allocation methods of passenger-baggage hybrid train in restricted railway transportation capacity including round conveyor system, vertical circulation system, and horizontal circulation system are presented. Loading/Unloading time is calculated based on the volume transported from Busan to Seoul via Daegu, Daejeon, and Osong with the parcel company P's logistics data. The horizontal circulation system shows less baggage volume capacity to be allocated and the maximum loading/unloading time with 434 secs. The vertical circulation system presents more loading time, but it shows best result with 408 secs. Loading/Unloading times are compared for each system and useful method is presented to improve transportation efficiency of the train.