• Title/Summary/Keyword: load-transfer method

Search Result 597, Processing Time 0.027 seconds

Analytical Technique and Load Transfer Features on Pile Using Finite Difference Method (유한차분법을 이용한 말뚝의 하중전이특성 및 해석기법)

  • Han, Jung-Geun;Lee, Jae-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.5
    • /
    • pp.10-21
    • /
    • 2006
  • For analyze of the bearing capacity, skin friction and settlements of pile on axial compressive loading, both Load transfer tests of pile and pile loading test in field have application to commonly before pile installing. A bearing capacity of pile was affected by the characteristics of surrounding ground of pile. Especially, that is very different because of evaluation of settlement due to each soil conditions of ground depths. The ground characteristics using evaluation of bearing capacity of pile through load transfer analysis depends on N values of SPT, and then a bearing capacity of pile installed soft ground and refilled area may be difficult to rational evaluation. An evaluation of bearing capacity on pile applied axial compressive loading was effected by strength of ground installed pile, unconfined compressive strength at pile tip, pile diameter, rough of excavated surface, confining pressure and deformation modules of rock etc and these are commonly including the unreliability due to slime occurred excavation works. Load transfer characteristics considered ground conditions take charge of load transfer of large diameter pile was investigated through case study applied load transfer tests. To these, matrix analytical technique of load transfer using finite differential equation developed and compared with the results of pile load test.

Shear Load Transfer Characteristics of Drilled Shafts in Weathered Rocks (풍화암에 근입된 현장타설 말뚝의 하중 전이 특성)

  • Jeong, Sang-Seom;Cho, Sung-Han;Kim, Soo-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03a
    • /
    • pp.85-106
    • /
    • 2000
  • The load distribution and deformation of drilled shafts subjected to axial loads were evaluated by a load transfer approach. The emphasis was on quantifying the load transfer mechanism at the interface between the shafts and surrounding highly weathered rocks based on a numerical analysis and small-scale tension load tests performed on nine instrumented piles. An analytical method that takes into account the soil coupling effect was developed using a modified Mindlin's point load solution. Based on the analysis, a single-modified hyperbolic model is proposed for the shear transfer function of drilled shafts in highly weathered rocks. Through comparisons with field case studies, it is found that the prediction by the present approach is in good agreement with the general trend observed by in-situ measurements.

  • PDF

Analysis Method of Passive Piles considering group effect (군말뚝효과를 고려한 수동말뚝의 해석기법)

  • 정상섬;원진오;김병철
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.151-158
    • /
    • 2000
  • The lateral deformation of one row pile groups was investigated based on analytical study and a numerical analysis. The emphasis was on quantifing the load transfer of pile groups subjected to lateral soil movement. An analytical method to consider pile-soil interaction in weathered soil was developed using load-transfer curve methods. Through the comparative study, it is found that the prediction by present approach is in good agreement with the general trend observed by in-situ measurements.

  • PDF

Load Transfer Switching for Reducing the Voltage Sag's Effect in Radial Power Distribution System (순간전압강하 저감을 위한 방사상 배전계통에서의 부하 절환 스위칭)

  • Yun, Sang-Yun;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.208-210
    • /
    • 2000
  • In this paper, we present a method for mitigating the effect of voltage sag in radial power distribution systems using load transfer switching (LTS). The term of LTS is defined that the weakness load points for voltage sag transfer to the alternative source during the fault clearing practices. The sequences of proposed LTS method is divided into the search of weakness points for voltage sag using the risk assessment model and transfer behavior of weakness points. Through the case studies, we verify the effectiveness of proposed LTS method and present the searching method of effective application points of LTS method using the risk assessment model.

  • PDF

Development of a TFM load calculation program based on thermal response factor (열응답계수를 이용한 TFM 부하계산법의 제안)

  • 최우영;고철균;이재헌;류해성
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.684-691
    • /
    • 1999
  • A load calculation program based on TFM(Transfer function method) has been proposed in this study. The validity of the current method has been verified by comparing heat gain calculation by TRF(Thermal response factor) with that by CTF(Conduction transfer function) adopted in ASHRAE. In addition, it seems that the CTF coefficients given in ASHRAE tables have somewhat ambiguity The load calculation program developed in the current study has been employed to calculate cooling load from the exterior walls and roof of example 6 in the ASHRAE. The results are found in good agreement.

  • PDF

Numerical Analysis of Foundation Reinforcing Method using Load Transfer Apparatus (하중전이 장치를 이용한 기초보강공법의 수치해석적 연구)

  • Jeon, Jun-Seo;Choi, Ki-Sun;You, Young-Chan;Ha, Soo-Kyoung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.617-627
    • /
    • 2021
  • In this study, a numerical analysis using a three-dimensional numerical simulation was performed to assess the applicability of foundation reinforcing method using load transfer apparatus which can be used in the remodeling of deteriorated structures. The numerical model was validated through comparison with the real scale experimental results, and then a parametric study was performed to investigate the effect of friction coefficient of load transfer apparatus and axial stiffness of pile on the performance of foundation reinforcing method. It was confirmed that the foundation reinforcing method considered in this study can efficiently control the load applied to an existing foundation.

Characteristics of Dynamic Load Transfer for Vertically Vibrating Pile (연직진동말뚝의 동적 하중전이 특성)

  • Lee, Seung-Hyun;Kim, Eung-Seok;Yoon, Ki-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3872-3878
    • /
    • 2014
  • In this study, the dynamic load transfer function, which is necessary for analyzing a pile installed by a vibro hammer, was determined by comparing the results of the analyses and instrumented tests. The static load transfer function was modeled by the Ramberg-Osgood model through an analytical method before determining the dynamic load transfer curve. The parameters of the Ramberg-Osgood model were correlated with the N value of the standard penetration test and average values of the correlation coefficient were 0.97 for the shaft load transfer and 0.98 for the base load transfer. The dynamic load transfer function was simulated using the modified Ramberg-Osgood model. The results showed that there were little differences in the characteristics of dynamic load transfer between the results of the measurement and prediction.

A Study of Field Loading Tests for Derivation of Load Transfer Curves of the Driven Steel Pipe Piles (타입 강관말뚝 하중전이곡선 도출을 위한 현장재하시험 연구)

  • Lim, Jong-Seok;Choi, Yong-Kyu;Ha, Hyuk;Sim, Jong-Sun;Park, Jong-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1188-1194
    • /
    • 2008
  • As computation technologies has developed, the analysis using load transfer is mainly performed. But most of the functions used in the above program has been developed in foreign countries. Also in our nation, lots of studies concerning load transfer are being researched. The investigation of suitability about the piles installed in our grounds, however, is required as functions acquired experientially, basing on the piles installed in foreign grounds. In this background, the load transfer curve required to use load transfer method on its design through the analysis of field tests inside our nation intends to be made, on which this research focuses.

  • PDF

A Study on the Derivation of Load Transfer Curves of the Driven Steel Pipe Piles by Soil (타입강관말뚝의 토질별 하중전이곡선 도출에 관한 연구)

  • Lim, Jong-Seok;Choi, Yong-Kyu;Sim, Jong-Sun;Park, Jong-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.539-550
    • /
    • 2009
  • As computation technologies has developed, the analysis using load transfer is mainly performed. But most of the functions used in the above program has been developed in foreign countries. Also in our nation, lots of studies concerning load transfer are being researched. The investigation of suitability about the piles installed in our grounds, however, is required as functions acquired experientially, basing on the piles installed in foreign grounds. In this background, the load transfer curve required to use load transfer method on its design through the analysis of field tests inside our nation intends to be made, on which this research focuses.

  • PDF

A Study of Field Loading Tests for Derivation of Load Transfer Curves of the Driven Steel Pipe Piles (타입 강관말뚝 하중전이곡선 도출을 위한 현장재하시험 연구)

  • Lim, Jong-Seok;Choi, Yong-Kyu;Sim, Jong-Sun;Park, Jong-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.760-766
    • /
    • 2008
  • As computation technologies has developed, the analysis using load transfer is mainly performed. But most of the functions used in the above program has been developed in foreign countries. Also in our nation, lots of studies concerning load transfer are being researched. The investigation of suitability about the piles installed in our grounds, however, is required as functions acquired experientially, basing on the piles installed in foreign grounds. In this background, the load transfer curve required to use load transfer method on its design through the analysis of field tests inside our nation intends to be made, on which this research focuses.

  • PDF