• 제목/요약/키워드: load-slip

검색결과 518건 처리시간 0.021초

PLL 방식을 이용한 유도전동식 고효율 운전장치의 간략화에 관한 연구 (Simplified High Efficiency Drive System of Induction Motor using PLL Technique)

  • 유철로;이공희;이성룡
    • 대한전기학회논문지
    • /
    • 제35권9호
    • /
    • pp.403-408
    • /
    • 1986
  • In this paper, the method to improve the efficiency of an induction motor at light load is discussed. Efficiency of induction motor can be very substantially improved by keeping the slip frequency as constant. Therefore, to simplify the control loop, algorithm which maintain constant slip frequency and control the input voltage is adopted. Simplified high efficiency drive of induction motor using PLL technique is suggested. In order to verify the validity of this system, the test results are compared with those obtained by optimal slip drive system and then we found closer to the optimal efficiency. For example its efficiency is improved from 18[%] to 42[%] at a few fraction of the full load (20[%]).

  • PDF

트레드밀에 사용되는 3상 유도전동기의 슬립 기반 센서리스 제어 저속성능 향상 (Low-Speed Performance Improvement of Slip Based Sensorless Control for Three-Phase Induction Motor Used in Treadmill)

  • 이수형;이상희;문태양;한희민;김준석
    • 전력전자학회논문지
    • /
    • 제24권1호
    • /
    • pp.25-32
    • /
    • 2019
  • Recent high-end treadmills are demanding stable performance at lower speeds. In this study, a slip control-based induction motor sensorless algorithm for treadmills, which have heavy load variations, is proposed. A modified Gopinath flux estimator is used to evaluate the rotor flux. Results indicate that a good speed regulation performance is achieved even at a low speed of approximately 3 Hz with a nominal exercise load of 90 kg body weight. The slip calculation method in the stationary coordinate system is adopted to improve the control stability. The proposed algorithm is verified throughout the simulation study using PSIM, and the experimental test consists of a commercial treadmill system.

Interface slip of post-tensioned concrete beams with stage construction: Experimental and FE study

  • Low, Hin Foo;Kong, Sih Ying;Kong, Daniel;Paul, Suvash Chandra
    • Computers and Concrete
    • /
    • 제24권2호
    • /
    • pp.173-183
    • /
    • 2019
  • This study presents experimental and numerical results of prestressed concrete composite beams with different casting and stressing sequence. The beams were tested under three-point bending and it was found that prestressed concrete composite beams could not achieve monolith behavior due to interface slippage between two layers. The initial stress distribution due to different construction sequence has little effect on the maximum load of composite beams. The multi-step FE analyses could simulate different casting and stressing sequence thus correctly capturing the initial stress distribution induced by staged construction. Three contact algorithms were considered for interaction between concrete layers in the FE models namely tie constraint, cohesive contact and surface-to-surface contact. It was found that both cohesive contact and surface-to-surface contact could simulate the interface slip even though each algorithm considers different shear transfer mechanism. The use of surface-to-surface contact for beams with more than 2 layers of concrete is not recommended as it underestimates the maximum load in this study.

CLT-콘크리트 합성 거동을 위한 전단 연결재 부재 실험과 해석 연구 (Experimental and Analytical Study of Shear Connectors for the CLT-Concrete Composite Floor System)

  • 박아론;이기학
    • 한국공간구조학회논문집
    • /
    • 제19권1호
    • /
    • pp.65-73
    • /
    • 2019
  • This paper assesses the structural performance (force-slip response, slip modulus, and failure modes) of a CLT-concrete composite by conducting fifteen push-out test specimens. In addition, non-linear 3D finite element analysis was also developed to simulate the load-slip behavior of the CLT-concrete specimens under shear load. All 15 test specimens simulating the effect of concrete thickness, connection angle and penetration depth with four different shear connector types were built and tested to evaluate the flexural performance. Experimental results show that the maximum shear capacity for the composite action is obtained when the fixing angle is $90^{\circ}$ and the penetration depth of 95mm for SC normal screw was used to achieve ductile failure compared to other shear connectors.

공기윤활 웨이브 저어널 베어링의 부하 특성에 관한 연구 (A Study on the Load Characteristics of Air-Lublicated Hydrodynamic Wave Journal Bearing)

  • 조성욱;임윤철
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제29회 춘계학술대회
    • /
    • pp.156-161
    • /
    • 1999
  • new bearing concept, the wave journal bearing, has been developed to improve the static and dynamic performances of an air-lubricated hydrodynamic journal bearing. This concept features waves on bearing surface. In this study, we present the solution of the compressible Reynolds equation valid for arbitrary Knudsen numbers. Straight wave journal bearing is investigated numerically. The performances of straight wave bearing are compared to the plain journal bearing over relatively wide range of bearing number and eccentricity. The wave journal bearing offers better stability than the plain journal bearing under a13 bearing numbers covered in this study. The bearing load and stability characteristics are dependent on the geometric parameters such as the amplitude and the starting point of the wave relative to the applied load. Under the condition of Knudsen number)0.01, we can not ignore the effect of slip for journal bearing.

  • PDF

해수 중에서 STS304강의 프레팅 마멸특성 (Fretting Wear Characteristics of STS304 Steel in Seawater)

  • 김은구;김태형;김석삼
    • Tribology and Lubricants
    • /
    • 제16권4호
    • /
    • pp.302-307
    • /
    • 2000
  • The fretting wear characteristics of STS304 steel in seawater were investigated experimentally. A fretting wear tester was designed to be suitable for this fretting test. This study was focused on the effects due to the combination of normal load, slip amplitude and number of cycles and corrosive environment as the main factors of fretting. The results of this study showed that the wear volume increased abruptly at slip amplitude between 70 $\mu\textrm{m}$∼100 $\mu\textrm{m}$ by fracture of oxide layers but above that slip amplitude the wear volume increased steadily.

핵연료봉재의 프레팅 마멸 특성 (Fretting Wear Characteristics of Nuclear Fuel Rod Material)

  • 김태형;조광희;김석삼
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1996년도 제24회 춘계학술대회
    • /
    • pp.25-29
    • /
    • 1996
  • The fretting wear characteristics for Zircaloy-4 tube used as fuel rod in the nuclear power plant have been investigated. The fretting wear tester was designed and manufactured for this experiment. This study was focused on main factors of fretting wear, cycle, slip amplitude and normal load. The worn surfaces were observed by SEM.

  • PDF

Study on bond behavior of steel reinforced high strength concrete after high temperatures

  • Chen, Zongping;Zhou, Ji;Wang, Xinyue
    • Advances in concrete construction
    • /
    • 제10권2호
    • /
    • pp.113-125
    • /
    • 2020
  • This paper presents experimental results on bond-slip behavior of steel reinforced high-strength concrete (SRHC) after exposure to elevated temperatures. Three parameters were considered in this test: (a) high temperatures (i.e., 20℃, 200℃, 400℃, 600℃, 800℃); (b) concrete strength (i.e., C60, C70, C80); (c) anchorage length (i.e., 250 mm, 400 mm). A total of 17 SRHC specimens subjected to high temperatures were designed for push out test. The load-slip curves at the loading end and free end were obtained, the influence of various variation parameters on the ultimate bond strength and residual bond strength was analyzed, in addition, the influence of elevated temperatures on the invalidation mechanism was researched in details. Test results show that the shapes of load-slip curves at loading ends and free ends are similar. The ultimate bond strength and residual bond strength of SRHC decrease first and then recover partly with the temperature increasing. The bond strength is proportional to the concrete strength, and the bond strength is proportional to the anchoring length when the temperature is low, while the opposite situation occurs when the temperature is high. What's more, the bond damage of specimens with lower temperature develops earlier and faster than the specimens with higher temperature. From these experimental findings, the bond-slip constitutive formula of SRHC subjected to elevated temperatures is proposed, which fills well with test data.

Push-out test on the one end welded corrugated-strip connectors in steel-concrete-steel sandwich structure

  • Yousefi, Mehdi;Ghalehnovi, Mansour
    • Steel and Composite Structures
    • /
    • 제24권1호
    • /
    • pp.23-35
    • /
    • 2017
  • Current form of Corrugated-strip connectors are not popular due to the fact that the two ends of this form need to be welded to steel face plates. To overcome this difficulty, a new system is proposed in this work. In this system, bi-directional corrugated-strip connectors are used in pairs, and only one of their ends is welded to the steel face plates on each side. The other end is embedded in the concrete core. To assemble the system, common welding devices are required, and welding process can be performed in the construction sites. By performing the Push-out test under static loading, the authors experimentally assess the effects of geometric parameters on ductility, failure modes and the ultimate shear strength of the aforesaid connectors. For this purpose, sixteen experimental samples are prepared and investigated. For fifteen of these samples, one end of the shear connectors is welded to steel face plates, and the other end is embedded in the concrete. Another experimental sample is prepared in which both ends are welded to the steel face plates. According to the achieved results, several relations are proposed for predicting the ultimate shear strength and load vs. interlayer slip (load-slip) behavior of corrugated-strip connectors. Moreover, these formulas are compared with those of the well-known codes and standards. Accordingly, it is concluded that the authors' relations are more reliable.

관성변화시의 Anti-slip 제어기에 의한 유도전동기 병렬운전 (Parallel Running of Induction Motor by Anti-slip Controller of Inertia Conversion)

  • 전기영;김중교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.877-878
    • /
    • 2006
  • In electric motor coaches, the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the weight of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, inertia conversion the electric motor coach has slip phenomena. This paper proposes a anti-slip control algorithm which uses the maximum adhesive effort by instantaneous estimation of adhesion force using load torque disturbance observer. Based on this estimated adhesive effort, the anti-slip control is performed to obtain the maximum transfer of the tractive effort.

  • PDF