• 제목/요약/키워드: load-displacement relation, load-strain relation

검색결과 23건 처리시간 0.027초

New approach for Ductility analysis of partially prestressed concrete girders

  • Radnic, Jure;Markic, Radoslav;Grgic, Nikola;Cubela, Dragan
    • Structural Engineering and Mechanics
    • /
    • 제70권3호
    • /
    • pp.257-267
    • /
    • 2019
  • Expressions for the calculation of ductility index for concrete girders with different ratios of prestressed and classical reinforcement were proposed using load-displacement, load-strain and load-curvature relation. The results of previous experimental static tests of several large-scale concrete girders with different ratio of prestressed and classical reinforcement are briefly presented. Using the proposed expressions, various ductility index of tested girders were calculated and discussed. It was concluded that the ductility of girders decreases approximately linearly by increasing the degree of prestressing. The study presents an expression for the calculation of the average ductility index of classical and prestressed reinforced concrete girders, which are similar to the analysed experimental test girders.

평면변형률 상태 하에서 유한요소해석을 이용한 균열닫힘 거동 예측 및 평가 (Finite Element Analysis of Fatigue Crack Closure under Plane Strain State)

  • 이학주;송지호;강재윤
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.202-207
    • /
    • 2004
  • An elastic-plastic finite element analysis of fatigue crack closure is performed for plane strain conditions. The stabilization behavior of crack opening level and the effect of mesh size on the crack opening stress are investigated. In order to obtain a stabilized crack opening level for plane strain conditions, the crack must be advanced through approximately four times the initial monotonic plastic zone. The crack opening load tends to increase with the decrease of mesh size. The mesh size nearly equal to the theoretical plane strain cyclic plastic zone size may provide reasonable numerical results comparable with experimental crack opening data. The crack opening behavior is influenced by the crack growth increment and discontinuous opening behavior is observed. A procedure to predict the most appropriate mesh size for different stress ratio is suggested. Crack opening loads predicted by the FE analysis based on the procedure suggested resulted in good agreement with experimental ones within the error of 5 %. Effect of the distance behind the crack tip on the crack opening load determined by the ASTM compliance offset method based on the load-displacement relation and by the rotational offset method based on the load-differential displacement relation is investigated. Optimal gage location and method to determine the crack opening load is suggested.

  • PDF

콘크리트 충전형 압축부재의 단면특성에 따른 구속효과 평가 (Evaluation for Confined Effects by the Sectional Properties of Concrete Filled Steel Tube Columns)

  • 박국동;황원섭;김희주;전명일
    • 한국강구조학회 논문집
    • /
    • 제22권4호
    • /
    • pp.365-375
    • /
    • 2010
  • 콘크리트 충전형 합성부재는 압축하중 상태에서 강재에 의한 콘크리트의 구속효과와 콘크리트에 의한 강재의 국부좌굴에 대한 보강효과를 기대할 수 있는 압축부재이다. 기존의 연구결과를 실험결과와 비교한 후, 구속효과가 하중-변위 관계에 미치는 영향을 평가하여 기존의 응력-변형률 관계를 수정하였다. 수정된 응력-변형률 관계를 적용한 비선형 수치해석 프로그램을 작성하여 단면특성과 재료특성에 따른 각각의 설계 변수들이 하중-변위 관계와 모멘트-곡률 관계에 미치는 영향을 평가하였다.

GFS로 성능향상된 교량 바닥판의 정적 보강효과 (A Experimental Study on the Static Strengthen Effect of Bridge Deck Strengthened with GFS)

  • 심종성;오홍섭;류승무;박성재
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.739-744
    • /
    • 2001
  • The concrete bridge deck is quitely required to be replaced or strengthened due to decreasing load carrying capacity. In this study, to increase load capacity of the reinforced concrete slab, bridge deck is reinforced with the glass fiber sheets. they are examined on the strengthen effect and the static behavior, This paper considers relation of load-displacement and strain-distance. The static behavior of the slab strengthened is represented to maximum load. Owing to that, they are examined on increasing load carrying capacity of reinforced bridge deck and strengthen effect about on the crack.

  • PDF

역해석과 소형펀치 시험에 의한 발전설비 용접부의 소성유동특성 평가 (An Evaluation of Plastic Flow Characteristic for local structure of Weldment in Power Plant using SP test and Inverse FEA)

  • 백승세;권일현;김회현;이동환;양성모;유호선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.308-313
    • /
    • 2004
  • SP test has been confirmed the availability, however the application of SP test is hampered because the relation of stress-strain and load-displacement is not determined definitely. This study suggested an evaluation technique of plastic flow characteristic for X20CrMoV121 steel weldment through inverse analysis using SP test and finite element analysis(FEA). From the result, good agreement was found in load-displacement curves obtained from SP test and FEA. Also, The behavior of load-displacement curve from FEA show a rule that load is increase with increasing K(strength coefficient) and displacement is increase with increasing n(work hardening index). From the inverse analysis, true stress-strain curve could be obtained for each local structure of weldment. And the CGHAZ and WM, which showed lower load- displacement behavior, have smaller work hardening index, while FGHAZ have the largest index.

  • PDF

합성형태에 따른 콘크리트 구속효과를 고려한 응력-변형률 관계식의 제안 (Proposal of Stress-Strain Relations Considering Confined Effects for Various Composite Columns)

  • 박국동;황원섭;윤희택;선우현
    • 대한토목학회논문집
    • /
    • 제30권3A호
    • /
    • pp.265-275
    • /
    • 2010
  • 콘크리트 충전형 합성부재와 콘크리트 피복형 합성부재는 압축하중 상태에서 강재에 의한 콘크리트의 구속효과와 콘크리트에 의한 강재의 국부좌굴에 대한 보강효과를 기대할 수 있는 압축부재이다. 기존의 연구결과를 바탕으로 RC, CFT, CET 압축부재에 대한 응력-변형률 관계와 하중-변위 관계를 철근비와 강재비에 따라 해석하였다. 이후 도출된 해석결과를 실험결과와 비교한 후, 구속효과가 하중과 변위에 미치는 영향을 평가하여 기존의 응력-변형률 관계를 수정하였다. 또한 국외 각국의 설계기준의 설계강도와 비교하여 수정된 응력-변형률 관계 제안식을 검토하였다.

보강재의 부착방법의 따른 물리적 거동 특성에 관한 연구 (A Study on Physical Behavior Property of R/C Beams Strengthened with Bonding Methods)

  • 한만엽;백승덕
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.727-732
    • /
    • 1999
  • In this research, we made an experiment on the 10 specimen beams that we made. The specimen beams consist of 4 steel plate strengthening beams and 5 carbon fiber sheet strengthening beams. We applied the methods of notch, rounding off a edge, anchor bolt and side shear strengening to the steel plate and for the case of carbon fiber sheet, we applied the methods of anchor bolt, line anchor and shear strengthening. After all the cases were applied, the beams was measured and analyzed about the behavior property of strengthened beams, th ability of strengthening method, the relation between load and the shape of failure, the crack load, the yield load, the shape of crack pattern, the increasing rate from yield load and maximum load and the strain of rebar. All the strengthening methods resulted in almost same value until the yield load, and it wasn't quite different from the theoretical value. In comparison with existing method, the SER, SEAS for the steel plate and the CEA, CESS, CCESS for carbon fiber sheet showed the increasement of ductility with big displacement.

  • PDF

탄소섬유 Rod로 성능향상된 R/C보의 휨 거동 연구 (The Study on Flexural Behavior of Reinforced Concrete Beams Strengthened with the Carbon Fiber Rod)

  • 심종성;문도영;김영호;김동희
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.611-616
    • /
    • 2002
  • The concrete beam is quickly required to be replaced or strengthened due to decreasing load carrying capacity. Flexural tests on 3.1m long reinforced concrete beams with carbon-fiber rod are reported. The selected experimental variable is the method of the anchoring beam. The effects of this variable in overall behavior are discussed. This paper considered relation of load-displacement and load-strain. The maximum load was increased to the static behavior of the R/C beam strengthened with CFR rod. The results indicated generally that the flexural strength of strengthening beam was increased. It was required a proper anchorage system and can be led the ductility of beams of a carbon-fiber rod.

  • PDF

구속 효과를 고려한 원형 CFT 기둥의 비선형 해석 (Nonlinear Analysis of a Circular CFT Column Considering Confining Effects)

  • 한택희;원덕희;이규세;강영종
    • 한국방재학회 논문집
    • /
    • 제9권6호
    • /
    • pp.1-9
    • /
    • 2009
  • 콘크리트의 구속효과 및 재료 비선형성, 강재의 변형 경화, 초기작용 축력을 고려하여 원형 콘크리트 충전 강관(Concrete Filled Steel Tube : CFT) 기둥의 해석을 위한 프로그램을 작성하고 검증 및 해석을 수행하였다. 축력-모멘트 상관관계 해석, 모멘트-곡률 해석, 모멘트-횡변위에 대한 해석을 수행하고, 선행연구자의 실험결과와 비교하여 검증하였다. 검증결과, 작성된 프로그램은 실제 CFT 기둥의 거동에 근접하였으며, 콘크리트의 구속효과를 고려한 경우 그렇지 않은 경우보다 더 큰 강도와 연성능력을 나타내었다. 콘크리트의 강도와 강관의 두께 변화에 따른 간단한 매개변수 해석을 수행하였으며, 콘크리트의 강도 증가 시 CFT 기둥의 강도는 증가하나 연성은 저하되는 결과를 보여주었다. 반면에 강관 두께를 증가시키는 경우에는, CFT 기둥의 강도와 연성 모두 증가하는 결과를 보여주었다.

Experimental Determination of Concrete Fracture Properties with Modified S-FPZ Model

  • Yon, Jung-Heum;Kim, Tai-Hoon
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권3E호
    • /
    • pp.213-219
    • /
    • 2006
  • Modified singular fracture process zone(S-FPZ) model is proposed in this paper to determine a fracture criterion for continuous crack propagation in concrete. The investigated fracture properties of the proposed fracture model are strain energy release rate at a micro-crack tip and the relationship between crack closure stress(CCS) and crack opening displacement(COD) in the FPZ. The proposed model can simulate the actual fracture energy of experimental results fairly well. The results of the experimental data analysis show that specimen geometry and loading condition did not affect the CCS-COD relation. However, the strain energy release rate is a function of not only specimen geometry but also crack extension. The strain energy release rate remained constantly at the minimum value up to the crack extension of 25 mm, and then it increased linearly to the maximum value. The maximum fracture criterion occurred at the peak load for specimens of large size. The fracture criterion remained at the maximum value after the peak load. The variation of the fracture criterion is caused by micro-cracking and micro-crack localization. The fracture criterion of strain energy release rate can simply be the size effect of concrete fracture, and it can be used to quantify the micro-cracking and micro-crack localizing behavior of concrete.