• 제목/요약/키워드: load-displacement behaviour

검색결과 126건 처리시간 0.023초

내압을 받는 벨로즈의 변형 거동에 관한 연구 (A Study on the Deformation Behaviour of Bellows Subjected to Internal Pressure)

  • 왕지석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권5호
    • /
    • pp.702-710
    • /
    • 1999
  • U-shaped bellows are usually used to piping system pressure sensor and controller for refriger-ator. Bellows subjected to internal pressure are designed for the purpose of absorbing deformation. Internal pressure on the convolution sidewall and end collar will be applied to an axial load tend-ing to push the collar away from the convolutions. To find out deformation behavior of bellow sub-jected to internal pressure the axisymmetric shell theory using the finite element method is adopted in this paper. U-shaped bellows can be idealized by series of conical frustum-shaped ele-ments because it is axisymmetric shell structure. The displacements of nodal points due to small increment of force are calculated by the finite element method and the calculated nodal displace-ments are added to r-z cylindrical coordinates of nodal points. The new stiffness matrix of the sys-tem using the new coordinates of nodal points is adopted to calculate the another increments of nodal displacement that is the step by step method is used in this paper. The force required to deflect bellows axially is a function of the dimensions of the bellows and the materials from which they are made. Spring constant is analyzed according to the changing geometric factors of U-shaped bellows. The FEM results were agreed with experiment. Using developed FORTRAN PROGRAM the internal pressure vs. deflection characteristics of a particu-lar bellows can be predicted by input of a few factors.

  • PDF

Numerical modelling of the pull-out response of inclined hooked steel fibres

  • Georgiadi-Stefanidi, Kyriaki;Panagouli, Olympia;Kapatsina, Alexandra
    • Advances in concrete construction
    • /
    • 제3권2호
    • /
    • pp.127-143
    • /
    • 2015
  • Steel fibre reinforced concrete (SFRC) is an anisotropic material due to the random orientation of the fibres within the cement matrix. Fibres under different inclination angles provide different strength contribution of a given crack width. For that the pull-out response of inclined fibres is of great importance to understand SFRC behaviour, particularly in the case of fibres with hooked ends, which are the most widely used. The paper focuses on the numerical modelling of the pull-out response of this kind of fibres from high-strength cementitious matrix in order to study the effects of different inclination angles of the fibres to the load-displacement pull-out curves. The pull-out of the fibres is studied by means of accurate three-dimensional finite element models, which take into account the nonlinearities that are present in the physical model, such as the nonlinear bonding between the fibre and the matrix in the early stages of the loading, the unilateral contact between the fibre and the matrix, the friction at the contact areas, the plastification of the steel fibre and the plastification and cracking of the cementitious matrix. The bonding properties of the fibre-matrix interface considered in the numerical model are based on experimental results of pull-out tests on straight fibres.

Performance evaluation and hysteretic modeling of low rise reinforced concrete shear walls

  • Nagender, T.;Parulekar, Y.M.;Rao, G. Appa
    • Earthquakes and Structures
    • /
    • 제16권1호
    • /
    • pp.41-54
    • /
    • 2019
  • Reinforced Concrete (RC) shear walls are widely used in Nuclear power plants as effective lateral force resisting elements of the structure and these may experience nonlinear behavior for higher earthquake demand. Short shear walls of aspect ratio less than 1.5 generally experience combined shear flexure interaction. This paper presents the results of the displacement-controlled experiments performed on six RC short shear walls with varying aspect ratios (1, 1.25 and 1.5) for monotonic and reversed quasi-static cyclic loading. Simulation of the shear walls is then carried out by Finite element modeling and also by macro modeling considering the coupled shear and flexure behaviour. The shear response is estimated by softened truss theory using the concrete model given by Vecchio and Collins (1994) with a modification in softening part of the model and flexure response is estimated using moment curvature relationship. The accuracy of modeling is validated by comparing the simulated response with experimental one. Moreover, based on the experimental work a multi-linear hysteretic model is proposed for short shear walls. Finally ultimate load, drift, ductility, stiffness reduction and failure pattern of the shear walls are studied in details and hysteretic energy dissipation along with damage index are evaluated.

Refined finite element modelling of circular CFST bridge piers subjected to the seismic load

  • Faxing Ding;Qingyuan Xu;Hao Sun;Fei Lyu
    • Computers and Concrete
    • /
    • 제33권6호
    • /
    • pp.643-658
    • /
    • 2024
  • To date, shell-solid and fibre element model analysis are the most commonly used methods to investigate the seismic performance of concrete-filled steel tube (CFST) bridge piers. However, most existing research does not consider the loss of bearing capacity caused by the fracture of the outer steel tube. To fill this knowledge gap, a refined finite element (FE) model considering the ductile damage of steel tubes and the behaviour of infilled concrete with cracks is established and verified against experimental results of unidirectional, bidirectional cyclic loading tests and pseudo-dynamic loading tests. In addition, a parametric study is conducted to investigate the seismic performance of CFST bridge piers with different concrete strength, steel strength, axial compression ratio, slenderness ratio and infilled concrete height using the proposed model. The validation shows that the proposed refined FE model can effectively simulate the residual displacement of CFST bridge piers subjected to highintensity earthquakes. The parametric analysis indicates that CFST piers hold sufficient strength reserves and sound deformation capacity and, thus, possess excellent application prospects for bridge construction in high-intensity areas.

수치해석을 통한 지진하중의 주기특성에 따른 그라운드 앵커의 거동 (Behaviour of Ground Anchor According to Period Characteristic of Seismic Load Using Numerical Analysis)

  • 오동욱;정혁상;윤환희;이용주
    • 터널과지하공간
    • /
    • 제28권6호
    • /
    • pp.635-650
    • /
    • 2018
  • 최근 국내에 발생된 지진으로 인해 더 이상 한반도가 지진으로부터 안전지대가 아니라는 것이 많은 사람들에게 각인되었다. 경주와 포항에서 발생된 지진은 그 동안 국내에서 내진설계에 기준으로 고려한 지진의 특성과 상이하게 나타났고, 그에 따른 내진설계 방법에 대한 연구 또한 많은 연구자들에 의해 수행되어 지고 있다. 이러한 지진하중에 대한 고려는 주로 기존 상부 구조물에 초점이 맞춰져 있으며, 그에 따른 연구 또한 활발히 이루어지고 있는 실정이다. 하지만, 지반의 구조적 안정성을 확보하기 위해 시공된 네일, 록볼트, 그라운드 앵커 등과 같은 지중구조물에 대한 지진하중으로부터의 구조적 안정성에 대한 고려는 많이 이루어지지 않고 있는 실정이다. 본 연구에서는 풍화암에 정착된 그라운드 앵커에 대해 정하중이 작용할 때와 지진하중이 앵커에 미치는 영향을 분석하였다. 정하중에 의한 영향은 현장 인장시험 결과로, 지진하중 영향은 수치해석을 통해 파악하였다. 그 결과, 앵커에 긴장력 도입으로 인한 반력판의 침하가 발생하는 것으로 나타났으며, 그로 인한 앵커의 축력 감소가 발생하였다. 또한 지진하중에 의해 앵커 정착부의 변위가 증가하였으며, 정착부 길이가 길수록 장주기 지진에 의한 영향이 큰 것으로 나타났다.

골유착성 임플랜트 보철물 장착시 하악골의 탄성변형 및 응력분포에 관한 삼차원 유한요소법적 연구 (A STUDY ON THE ELASTIC DEFORMATION AND STRESS DISTRIBUTION OF THE MANDIBLE WITH OSSEOINTEGRATED IMPLANT PROSTHESES USING THREE DIMENSIONAL FINITE ELEMENT ANALYSIS METHOD)

  • 김용호;김영수;김창회
    • 대한치과보철학회지
    • /
    • 제36권2호
    • /
    • pp.203-244
    • /
    • 1998
  • The human mandible is always under the condition of loading by the various forces extorted by the attached muscles. The loading is an important condition of the stomatognathic system. This condition is composed of the direction and amount of forces of the masticatory muscles, which are controlled by the neuromuscular system, and always influenced by the movement of both opening and closing. Mandible is a strong foundation for the teeth or various prostheses, nevetheless it is a elastic body which accompanies deformation by the external forces on it. The elastic properties of the mandible is influenced by the various procedures such as conventional restorative treatments, osseointegrated implant treatments, reconstructive surgical procedures and so forth. Among the treatments the osseointegrated implant has no periodontal ligaments, which exist around the natural teeth to allow physiologic mobility in the alveolar socket. And so around the osseointegrated implant, there is almost no damping effect during the transmission of occlusal stress and displacements. If the osseointegrated implants are connected by the superstructure for the stabilization and effective distribution of occlusal stresses, the elastic properties of mandible is restricted according to the extent of 'splinting' by the superstructure and implants. To investigate the change of elastic behaviour of the mandible which has osseointegrated implant prosthesis of various numbers of implant installment and span of superstructre, a three dimensional finite element model was developed and analyzed with conditions mentioned above. The conclusions are as follows : 1. The displacements are primarily developed at the area of muscle attachment and distributed all around the mandible according to the various properties of bone. 2. The segmentation in the superstructure has few influence on the distribution of stress and displacement. 3. In the load case of ICP, the concentration of tensional stress was observed at the anterior portion of the ramus($9.22E+6N/m^2$) and at the lingual portion of the symphysis menti($8.36E+6N/m^2$). 4. In the load case of INC, the concentration of tensional stress was observed at the anterior portion of the ramus($9.90E+6N/m^2$) and the concentration of tensional stress was observed at the lingual portion of the symphysis menti($2.38E+6N/m^2$)). 5. In the load case of UTCP, the relatively high concentration of tensional stress($3.66E+7N/m^2$) was observed at the internal surface of the condylar neck.

  • PDF

지진 하중을 고려한 단층파쇄대에서의 시공 중 터널 거동 분석에 관한 수치해석적 연구 (A preliminary numerical analysis on the behaviour of tunnel under construction in fracture zone considering seismic load)

  • 오동욱;홍순교;김대곤;이용주
    • 한국터널지하공간학회 논문집
    • /
    • 제21권2호
    • /
    • pp.279-299
    • /
    • 2019
  • 최근 발생한 경주 및 포항지진은 한반도가 더 이상 지진으로부터 안전지대가 아님을 상기시키는 계기가 되었다. 그에 따라 내진설계에 대한 중요성이 대두되고 있으며, 설계응답스펙트럼(design response spectrum)에 대한 연구 또한 많은 연구자들에 의해 활발히 이루어지고 있다. 현재 터널의 내진설계는 라이닝(Lining) 설치 완료 후 동적해석을 수행하여 안정성을 검토하는 과정으로 수행되어 시공 중에 지진 발생에 대한 고려는 이루어지지 않고 있다. 따라서 본 연구에서는 단층파쇄대에 시공 중인 터널의 현장계측 결과를 이용하여 역해석을 수행한 후 지진파를 고려한 수치해석을 수행하여 그로 인한 1차 지보재(록볼트, 숏크리트)의 거동 특성을 분석하였다. 지진파는 주기특성에 따라 단주기와 장주기로 구분하여 적용하였다. 수치해석 결과 지진의 주기 특성에 의한 영향은 미미한 것으로 나타났으며, 터널 천단 변위(crown displacement)는 28~31%, 단층파쇄대에 접한 좌측부의 변위는 약 14~16% 증가하는 것으로 나타났다. 기반암과 접하고 있는 우측부의 경우 약 13~27%가량 증가하는 것으로 나타났다. 숏크리트의 경우, 지진하중 고려에 따라 천단부에서의 축력이 약 113~115% 증가하였으며, 단층파쇄대와 접하고 있는 좌측부의 경우 102%, 기반암과 접하고 있는 우측부의 경우 106~110%가량 증가하는 것으로 각각 나타났다. 록볼트는 천단부, 좌측부, 우측부에서 정착지반이 단층파쇄대, 단층파쇄대와 기반암, 기반암인 경우로 선정하여 변위와 축력을 분석하였으며, 단층파쇄대와 기반암에 동시에 정착되어 있는 록볼트의 변위 및 축력이 지진으로부터 가장 취약한 것으로 나타났다.

Triaxial braiding 기술을 이용한 원형 튜브의 횡방향 저속충격파괴 거동분석 (Transverse Low Velocity Impact Failure Behavior of Triaxial Braided Composite Tube with Different Braiding Angles)

  • 심지현;박성민;김지혜;신동우;천진성;김재관;배진석
    • 한국염색가공학회지
    • /
    • 제28권4호
    • /
    • pp.246-252
    • /
    • 2016
  • In comparison to metal alloys, braided composite features a high impact resistance and crash energy absorption potential, and also it still remained competitive stiffness and strength properties. Braiding angle is one of the most important parameters which affect the mechanical behaviors of braided composite. This paper presents transverse low velocity impact failure behavior analysis on the carbon 3D triaxial braided composite tube with the braiding angle of $20^{\circ}$, $50^{\circ}$ and $80^{\circ}$. The flexural behaviour of 3D triaxial braided composite tube under bending loads was studied by conducting quasistatic three point bending test. Also, the low velocity impact responses of the braided composite tubes were also tested to obtain load-displacement curves and energy absorption. Consequently, the increase of the braided angle, the peak load also increases owing to the bigger bending stiffness.

압력용기 소재에서의 표면균열의 피로균열 성장특성에 관한 연구 (A Study on Fatigue Crack Growth Characterization Of Surface Crack In Pressure Vessel Materials)

  • 허용학;이주진;한지원;김종집;문한규
    • 대한기계학회논문집
    • /
    • 제14권1호
    • /
    • pp.96-102
    • /
    • 1990
  • 본 연구에서는 압력용기 소재인 SPV 50Q와 고압강관 소재로 사용하는 SPV 50Q 와 고압강간 소재로 사용하는 API 5A-K55에서의 표면균열의 표면방향과 깊이방향 또한 두께 평균에 대한 균열열림을 스트레인 게이지와 CMOD(Crack Mouth Opening Displace- ment)게이지를 이용하여 측정 비교하였다. 또한 표면균열의 균열 열림하중을 측정위 치에 따라 평가하고, 본연구에 사용한 두 소재에 대해 균열 열림을 고려한 표면균열 진전평가가 각 방향에 대해 이루어졌다.

Testing, simulation and design of back-to-back built-up cold-formed steel unequal angle sections under axial compression

  • Ananthi, G. Beulah Gnana;Roy, Krishanu;Chen, Boshan;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • 제33권4호
    • /
    • pp.595-614
    • /
    • 2019
  • In cold-formed steel (CFS) structures, such as trusses, transmission towers and portal frames, the use of back-to-back built-up CFS unequal angle sections are becoming increasingly popular. In such an arrangement, intermediate welds or screw fasteners are required at discrete points along the length, preventing the angle sections from buckling independently. Limited research is available in the literature on axial strength of back-to-back built-up CFS unequal angle sections. The issue is addressed herein. This paper presents an experimental investigation on both the welded and screw fastened back-to-back built-up CFS unequal angle sections under axial compression. The load-axial shortening and the load verses lateral displacement behaviour along with the deformed shapes at failure are reported. A nonlinear finite element (FE) model was then developed, which includes material non-linearity, geometric imperfections and modelling of intermediate fasteners. The FE model was validated against the experimental test results, which showed good agreement, both in terms of failure loads and deformed shapes at failure. The validated FE model was then used for the purpose of a parametric study to investigate the effect of different thicknesses, lengths and, yield stresses of steel on axial strength of back-to-back built-up CFS unequal angle sections. Five different thicknesses and seven different lengths (stub to slender columns) with two different yield stresses were investigated in the parametric study. Axial strengths obtained from the experimental tests and FE analyses were used to assess the performance of the current design guidelines as per the Direct Strength Method (DSM); obtained comparisons show that the current DSM is conservative by only 7% on average, while predicting the axial strengths of back-to-back built-up CFS unequal angle sections.