• Title/Summary/Keyword: load uncertainty

Search Result 318, Processing Time 0.025 seconds

Robust Adaptive Backstepping Control of Induction Motors Using Nonlinear Disturbance Observer (비선형 외란 관측기를 이용한 유도전동기의 강인 적응 백스테핑 제어)

  • Lee, Eun-Wook
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.2
    • /
    • pp.127-134
    • /
    • 2008
  • In this paper, we propose a robust adaptive backstepping control of induction motors with uncertainties using nonlinear disturbance observer(NDO). The proposed NDO is applied to estimate the time-varying lumped uncertainty which are derived from unknown motor parameters and load torque, but NDO error does not converge to zero since the derivate of lumped uncertainty is not zero. Then the fuzzy neural network(FNN) is presented to estimate the NDO error such that the rotor speed to converge to a small neighborhood of the desired trajectory. Rotor flux and inverse time constant are estimated by the sliding mode adaptive flux observer. Simulation results are provided to verify the effectiveness of the proposed approach.

Sensorless Control of Permanent Magnet Synchronous Motors with Compensation for Parameter Uncertainty

  • Yang, Jiaqiang;Mao, Yongle;Chen, Yangsheng
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1166-1176
    • /
    • 2017
  • Estimation errors of the rotor speed and position in sensorless control systems of Permanent Magnet Synchronous Motors (PMSM) will lead to low efficiency and dynamic-performance degradation. In this paper, a parallel-type extended nonlinear observer incorporating the nominal parameters is constructed in the stator-fixed reference frame, with rotor position, speed, and the load torque simultaneously estimated. The stability of the extended nonlinear observer is analyzed using the indirect Lyapunov's method, and observer gains are selected according to the transfer functions of the speed and position estimators. Taking into account the parameter inaccuracies issue, explicit estimation error equations are derived based on the error dynamics of the closed-loop sensorless control system. An equivalent flux error is defined to represent the back Electromotive Force (EMF) error caused by the inaccurate motor parameters, and a compensation strategy is designed to suppress the estimation errors. The effectiveness of the proposed method has been validated through simulation and experimental results.

Development of 6-component Force/Moment Calibration Machine (6분력 힘/모멘트 교정기의 개발)

  • 김갑순;강대임
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.127-134
    • /
    • 1998
  • This paper describes the design of a 6-component force/moment calibration machine with having the maximum capacities of 500 N in forces and 50 Nm in moments. To be used for the characteristic of a multi-component load cell. this machine consists of a body, a fixture, a force generating system, a moment generating system and weights. We have also evaluated the accuracy of the calibration machine. Test results show that the expanded relative uncertainty for force components $\pmFx,\;\pmFy\;and\;moment\;components\;\pmMx,\;\pmMy\;are\;less\; than\;8.6\times10^{-4}$, and force components +Fz, -Fz and moment components $\pmMz\;is\;less\;than\;1.6\times10^{-3},\;2.0\times10^{-5},\;1.7\times10^{-3}$ respectively.

  • PDF

Co-evolutionary Structural Design Framework: Min(Volume Minimization)-Max(Critical Load) MDO Problem of Topology Design under Uncertainty (구조-하중 설계를 고려한 공진화 구조 설계시스템)

  • 양영순;유원선;김봉재
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.3
    • /
    • pp.281-290
    • /
    • 2003
  • Co Evolutionary Structural Design(CESD) Framework is presented, which can deal with the load design and structural topology design simultaneously. The load design here is the exploration algorithm that finds the critical load patterns of the given structure. In general, the load pattern is a crucial factor in determining the structural topology and being selected from the experts어 intuition and experience. However, if any of the critical load patterns would be excluded during the process of problem formation, the solution structure might show inadequate performance under the load pattern. Otherwise if some reinforcement method such as safety factor method would be utilized, the solution structure could result in inefficient conservativeness. On the other hand, the CESD has the ability of automatically finding the most critical load patterns and can help the structural solution evolve into the robust design. The CESD is made up of a load design discipline and a structural topology design discipline both of which have the fully coupled relation each other. This coupling is resolved iteratively until the resultant solution can resist against all the possible load patterns and both disciplines evolve into the solution structure with the mutual help or competition. To verify the usefulness of this approach, the 10 bar truss and the jacket type offshore structure are presented. SORA(Sequential Optimization & Reliability Assessment) is adopted in CESD as a probabilistic optimization methodology, and its usefulness in decreasing the computational cost is verified also.

Development of a Numerical Analysis Method for the Outage Cost Assessment at Load Points (부하지점별 공급지장비추정을 위한 수치해석적 방법의 개발)

  • Choi, Jae-Seok;Kim, Hong-Sik;Moon, Seung-Pil;Kang, Jin-Jong;Kim, Ho-Yong;Park, Dong-Wook
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.11
    • /
    • pp.549-557
    • /
    • 2000
  • This study proposes a new numerical analysis method for assessing the outage cost of the composite power system with considering transmission system at load points. The proposed method comes from combination of the expected energy not served curve(EENSC) with the marginal outage cost function obtained at load points. Uncertainty of the outages of the generation and transmission systems was also included in this study. This study can be categorized into three processing parts as like as follows. Firstly, EENSC at load points was developed newly from the composite power system effective load duration curve which has been proposed by the authors. Secondly, this study proposes a new technical method for determining the coefficients of the marginal outage cost functions at load points in the composite power system(Generation and Transmission systems). It is a main key point that the mathematical expression for the marginal outage cost function at a load point is formulated and evaluated using relations between the GNP (or GDP) and the electrical energy demand at the load pint. Finally, the outage cost was calculated in this paper by combining the proposed EENSC with the marginal outage cost function evaluated at each load point. It is another important feature that the average costs for future at load points can be forescasted using the proposed approach. The effectiveness of the proposed new approach is demonstrated by the case studies with the IEEE-RTS.

  • PDF

Reliability Updates of Driven Piles Using Proof Pile Load Test Results (검증용 정재하시험 자료를 이용한 항타강관말뚝의 신뢰성 평가)

  • Park, Jae-Hyun;Kim, Dong-Wook;Kwak, Ki-Seok;Chung, Moon-Kyung;Kim, Jun-Young;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.324-337
    • /
    • 2010
  • For the development of load and resistance factor design, reliability analysis is required to calibrate resistance factors in the framework of reliability theory. The distribution of measured-to-predicted pile resistance ratio was constructed based on only the results of load tests conducted to failure for the assessment of uncertainty regarding pile resistance and used in the conventional reliability analysis. In other words, successful pile load test (piles resisted twice their design loads without failure) results were discarded, and therefore, were not reflected in the reliability analysis. In this paper, a new systematic method based on Bayesian theory is used to update reliability index of driven steel pile piles by adding more pile load test results, even not conducted to failure, into the prior distribution of pile resistance ratio. Fifty seven static pile load tests performed to failure in Korea were compiled for the construction of prior distribution of pile resistance ratio. Reliability analyses were performed using the updated distribution of pile resistance ratio and the total load distribution using First-order Reliability Method (FORM). The challenge of this study is that the distribution updates of pile resistance ratio are possible using the load test results even not conducted to failure, and that Bayesian update are most effective when limited data are available for reliability analysis or resistance factors calibration.

  • PDF

Study on Representation of Pollutants Delivery Process using Watershed Model (수질오염총량관리를 위한 유역모형의 유달 과정 재현방안 연구)

  • Hwang, Ha Sun;Rhee, Han Pil;Lee, Sung Jun;Ahn, Ki Hong;Park, Ji Hyung;Kim, Yong Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.6
    • /
    • pp.589-599
    • /
    • 2016
  • Implemented since 2004, TPLC (Total Pollution Load Control) is the most powerful water-quality protection program. Recently, uncertainty of prediction using steady state model increased due to changing water environments, and necessity of a dynamic state model, especially the watershed model, gained importance. For application of watershed model on TPLC, it needs to be feasible to adjust the relationship (mass-balance) between discharged loads estimated by technical guidance, and arrived loads based on observed data at the watershed outlet. However, at HSPF, simulation is performed as a semi-distributed model (lumped model) in a sub-basin. Therefore, if the estimated discharged loads from individual pollution source is directly entered as the point source data into the RCHRES module (without delivery ratio), the pollutant load is not reduced properly until it reaches the outlet of the sub-basin. The hypothetic RCHRES generated using the HSPF BMP Reach Toolkit was applied to solve this problem (although this is not the original application of Reach Toolkit). It was observed that the impact of discharged load according to spatial distribution of pollution sources in a sub-basin, could be expressed by multi-segmentation of the hypothetical RCHRES. Thus, the discharged pollutant load could be adjusted easily by modification of the infiltration rate or characteristics of flow control devices.

Integral Abutment Bridge behavior under uncertain thermal and time-dependent load

  • Kim, WooSeok;Laman, Jeffrey A.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.53-73
    • /
    • 2013
  • Prediction of prestressed concrete girder integral abutment bridge (IAB) load effect requires understanding of the inherent uncertainties as it relates to thermal loading, time-dependent effects, bridge material properties and soil properties. In addition, complex inelastic and hysteretic behavior must be considered over an extended, 75-year bridge life. The present study establishes IAB displacement and internal force statistics based on available material property and soil property statistical models and Monte Carlo simulations. Numerical models within the simulation were developed to evaluate the 75-year bridge displacements and internal forces based on 2D numerical models that were calibrated against four field monitored IABs. The considered input uncertainties include both resistance and load variables. Material variables are: (1) concrete elastic modulus; (2) backfill stiffness; and (3) lateral pile soil stiffness. Thermal, time dependent, and soil loading variables are: (1) superstructure temperature fluctuation; (2) superstructure concrete thermal expansion coefficient; (3) superstructure temperature gradient; (4) concrete creep and shrinkage; (5) bridge construction timeline; and (6) backfill pressure on backwall and abutment. IAB displacement and internal force statistics were established for: (1) bridge axial force; (2) bridge bending moment; (3) pile lateral force; (4) pile moment; (5) pile head/abutment displacement; (6) compressive stress at the top fiber at the mid-span of the exterior span; and (7) tensile stress at the bottom fiber at the mid-span of the exterior span. These established IAB displacement and internal force statistics provide a basis for future reliability-based design criteria development.

Nonlinear analysis of the RC structure by higher-order element with the refined plastic hinge

  • IU, C.K.
    • Computers and Concrete
    • /
    • v.17 no.5
    • /
    • pp.579-596
    • /
    • 2016
  • This paper describes a method of the refined plastic hinge approach in the framework of the higher-order element formulation that can efficaciously evaluate the limit state capacity of a whole reinforced concrete structural system using least number of element(s), whereas the traditional design of a reinforced concrete structure (i.e. AS3600; Eurocode 2) is member-based approach. Hence, in regard to the material nonlinearities, the efficient and economical cross-section analysis is provided to evaluate the element section capacity of non-uniform and arbitrary concrete section subjected to the interaction effects, which is helpful to formulate the refined plastic hinge method. In regard to the geometric nonlinearities, this paper relies on the higher-order element formulation with element load effect. Eventually, the load redistribution can be considered and make full use of the strength reserved owing to the redundancy of an indeterminate structure. And it is particularly true for the performance-based design of a structure under the extreme loads, while the uncertainty of the extreme load is great that the true behaviour of a whole structural system is important for the economical design approach, which is great superiority over the conservative optimal strength of an individual and isolated member based on traditional design (i.e. AS3600; Eurocode 2).

Evaluation on Actual Discharge Data for TMDL in Nakdong River Basin (낙동강수계 수질오염총량관리를 위한 유량조사 평가)

  • Kim, Gyeong-Hoon;Kim, Yong-Seok;Park, Bae-Kyung;Yoon, Jong-Su;Shin, Chan-Ki
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.4
    • /
    • pp.65-71
    • /
    • 2008
  • To drive efficiently total water pollution load management, needs to calculate the exact load emissions, pollution load allocation and implementation evaluation in each unit area of watershed and accurate and regular flow of data. For these reasons, the Nakdong River TMDL Research Center has produced directly or indirectly in the average interval of eight days (30 times or more / year) 41 points for unit area of the total water pollution load management and 8-point of municipal requirement for a total of 49 branches as a flow data in 2004 from August. This acquired the survey flow is evidence of trends and changes each point in the Nakdong River based on time, such as 10 years based on average design flow available to the foundation of the summit as the major water policy is to be utilized. This study was performed on actual discharge measuring data and introduced performance results each drainage basin of Nakdong River from 2004 to 2008 over the total of past five years.