• Title/Summary/Keyword: load tributary areas

Search Result 11, Processing Time 0.028 seconds

Proposed approach for determination of tributary areas for scattered pressure taps

  • Aly, Aly Mousaad
    • Wind and Structures
    • /
    • v.16 no.6
    • /
    • pp.617-627
    • /
    • 2013
  • In wind load calculations based on pressure measurements, the concept of 'tributary area' is usually used. The literature has less guidance for a systematic computational methodology for calculating tributary areas, in general, and for scattered pressure taps, in particular. To the best of the author's knowledge, there is no generic mathematical equation that helps calculate the tributary areas for irregular pressure taps. Traditionally, the drawing of tributary boundaries for scattered and intensively distributed taps may not be feasible (a time and resource consuming task). To alleviate this problem, this paper presents a proposed numerical approach for tributary area calculations on rectangular surfaces. The approach makes use of the available coordinates of the pressure taps and the dimensions of the surface. The proposed technique is illustrated by two application examples: first, quasi-regularly distributed pressure taps, and second, taps that have scattered distribution on a rectangular surface. The accuracy and the efficacy of the approach are assessed, and a comparison with a traditional method is presented.

Fluctuating wind loads across gable-end buildings with planar and curved roofs

  • Ginger, J.D.
    • Wind and Structures
    • /
    • v.7 no.6
    • /
    • pp.359-372
    • /
    • 2004
  • Wind tunnel model studies were carried out to determine the wind load distribution on tributary areas near the gable-end of large, low-rise buildings with high pitch planar and curved roof shapes. Background pressure fluctuations on each tributary area are described by a series of uncorrelated modes given by the eigenvectors of the force covariance matrix. Analysis of eigenvalues shows that the dominant first mode contributes around 40% to the fluctuating pressures, and the eigenvector mode-shape generally follows the mean pressure distribution. The first mode contributes significantly to the fluctuating load effect, when its influence line is similar to the mode-shape. For such cases, the effective static pressure distribution closely follows the mean pressure distribution on the tributary area, and the quasi-static method would provide a good estimate of peak load effects.

Use of vibration characteristics to predict the axial deformation of columns

  • Moragaspitiya, H.N. Praveen;Thambiratnam, David P.;Perera, Nimal J.;Chan, Tommy H.T.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.1
    • /
    • pp.73-88
    • /
    • 2014
  • Vibration characteristics of columns are influenced by their axial loads. Numerous methods have been developed to quantify axial load and deformation in individual columns based on their natural frequencies. However, these methods cannot be applied to columns in a structural framing system as the natural frequency is a global parameter of the entire framing system. This paper presents an innovative method to quantify axial deformations of columns in a structural framing system using its vibration characteristics, incorporating the influence of load tributary areas, boundary conditions and load migration among the columns.

Characteristics of wind loads on roof cladding and fixings

  • Ginger, J.D.
    • Wind and Structures
    • /
    • v.4 no.1
    • /
    • pp.73-84
    • /
    • 2001
  • Analysis of pressures measured on the roof of the full-scale Texas Tech building and a 1/50 scale model of a typical house showed that the pressure fluctuations on cladding fastener and cladding-truss connection tributary areas have similar characteristics. The probability density functions of pressure fluctuations on these areas are negatively skewed from Gaussian, with pressure peak factors less than -5.5. The fluctuating pressure energy is mostly contained at full-scale frequencies of up to about 0.6 Hz. Pressure coefficients, $C_p$ and local pressure factors, $K_l$ given in the Australian wind load standard AS1170.2 are generally satisfactory, except for some small cladding fastener tributary areas near the edges.

Analysis of the Characteristics of Wind Pressure Coefficient Working on Monosloped Roof Surface (편지붕형 지붕면에 작용하는 풍압계수 특성분석)

  • You, Ki-Pyo;Cho, Seul-Gi;Kim, Young-Moon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.4
    • /
    • pp.81-88
    • /
    • 2009
  • Damage on low?rise buildings caused by typhoons and storms is increasing every year. Thus, this study examined the distribution of wind pressure coefficient at each position according to the height of monosloped roof, and measured wind pressure coefficient according to tributary area and compared it with the current wind load standard. We analyzed six areas in order to analyze characteristics at each position of a half span roof, and found that the wind pressure coefficient was around 25% higher at the high comer (HC) than at the low corner (LC). The distribution pattern of peak pressure coefficient at each position was the same as the AIK load standard, but in the results of our experiment, wind pressure was around 40% lower than the load standard at HC and around 37% higher than the load standard at LC.

  • PDF

Computational method in database-assisted design for wind engineering with varying performance objectives

  • Merhi, Ali;Letchford, Chris W.
    • Wind and Structures
    • /
    • v.32 no.5
    • /
    • pp.439-452
    • /
    • 2021
  • The concept of Performance objective assessment is extended to wind engineering. This approach applies using the Database-Assisted Design technique, relying on the aerodynamic database provided by the National Institute of Standards and Technology (NIST). A structural model of a low-rise building is analyzed to obtain influence coefficients for internal forces and displacements. Combining these coefficients with time histories of pressure coefficients on the envelope produces time histories of load effects on the structure, for example knee and ridge bending moments, and eave lateral drift. The peak values of such effects are represented by an extreme-value Type I Distribution, which allows the estimation of the gust wind speed leading to the mean hourly extreme loading that cause specific performance objective compromises. Firstly a fully correlated wind field over large tributary areas is assumed and then relaxed to utilize the denser pressure tap data available but with considerably more computational effort. The performance objectives are determined in accordance with the limit state load combinations given in the ASCE 7-16 provisions, particularly the Load and Resistance Factor Design (LRFD) method. The procedure is then repeated for several wind directions and different dominant opening scenarios to determine the cases that produce performance objective criteria. Comparisons with two approaches in ASCE 7 are made.

Changes of Stream Water Quality and Loads of N and P from the Agricultural Watershed of the Yulmunchon Tributary of the Buk-Han River Basin (북한강 율문천 소유역에서 수질 변화와 농업활동에 의한 N, P 부하량)

  • Jung, Yeong-Sang;Yang, Jae E.;Park, Chol-Soo;Kwon, Young-Gi;Joo, Young-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.2
    • /
    • pp.170-176
    • /
    • 1998
  • Nitrogen and phosphorus loads from an agricultural watershed of the Yulmun-chon tributary in the Buk-Han River Basin were quantified based on total amounts of water stream flow. The water quality and soil loss were estimated. Levels of the stream were recorded automatically using the water level meter. The flow velocities, along with the cross-sectional areas of the riverbed, were measured to estimate total amounts of water flow at three monitoring sites in this tributary. Water samples were collected at nine sites with two weeks interval from May to August and analyzed for the water quality parameters. Amounts of soil loss were estimated by the USLE. The size of the Yulmunchon watershed was 3,210 ha, of which paddy and upland soil areas were composed about 41%. The total amounts of soil loss from the watershed areas were estimated to be $13,273Mg\;year^{-1}$, showing 53%, 46% and 0.7% of the soil loss ratio from upland, forest, and paddy areas, respectively. Electrical conductivities and Nitrogen concentrations of the stream water were higher in the lower watershed area than in the upper area. Increments of N were higher for $NO_3-N$ than $NH_4-N$. Nitrate nitrogen was the major N form to pollute the water due to the agricultural activity. Total runoff was about 72% of the total precipitation in the watershed. The maximum loads of T-N and T-P due to the runoff were estimated to be 1,500 and $5kg\;day^{-1}$, respectively. Concentrations of $NO_3-N$ and $NH_4-N$ in the runoff were 13.5 and 1.8 times higher than those in precipitation. The N loads were mainly from soil loss, application of fertilizer, and livestock wastes, which were 52% of total N load. Results demonstrated that reduction of fertilizer use and the soil loss would be essential for water quality protection of the agricultural watershed.

  • PDF

Effect of major pollution sources on algal blooms in the Seungchon weir and Juksan weir in the Yeongsan River using EFDC (EFDC를 이용한 영산강 주요 오염 부하 저감에 따른 승촌보 및 죽산보 녹조 현상 개선 효과 분석)

  • Kim, Jinsoo;Kim, Jaeyoung;Seo, Dongil
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.5
    • /
    • pp.369-381
    • /
    • 2020
  • In this paper, observed water quality, algal blooms and flow rates in the Yeongsan River and its boundaries including 8 tributaries and 2 wastewater treatment plants for two years of 2018-2019 were analyzed. It seems effects of non-point source load inputs from basin areas to the river may be significant though the field data availability was limited. The EFDC model was calibrated against data collected from 6 water level monitoring stations and 6 water quality monitoring stations, respectively, in the study area. Water quality improvement scenarios were developed assuming 50% and 75% reductions of major pollution sources including treatment plants and tributaries. The developed scenarios were applied to the EFDC model to estimate effects on algal bloom occurrences in the Seungchon weir and Juksan weir. Improvement of the effluent of Gwangju 1 WWTP by 75% did not show any effect on algal blooms for two weir locations. The major tributary affecting algal blooms in the Seungchon weir was the Hwangryong River. The Jisuk stream was found as the most important tributary for the Juksan weir followed by the effect of the Hwangryong River. Though it seems other scattered small nonpoint source load input to the Yeongsan river also seem to be important, it was not possible to reflect their effects appropriately due to field data availability.

Applicability Analysis of the HSPF Model for the Management of Total Pollution Load Control at Tributaries (지류총량관리를 위한 HSPF 모형의 적용성 분석)

  • Song, Chul Min;Kim, Jung Soo;Lee, Min Sung;Kim, Seo Jun;Shin, Hyung Seob
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • The total maximum daily load (TMDL) implemented in Korea mainly manages the mainstream considering a single common pollutant and river discharge, and the river system is divided into unit watersheds. Changes in the water quality of managed rivers owing to the water quality management in tributaries and unit watersheds are not considered when implementing the TMDL. In addition, it is difficult to consider the difference in the load of pollutants generated in the tributary depending on the conditions of the water quality change in each unit watershed, even if the target water quality was maintained in the managed water system. Therefore, it is necessary to introduce the total maximum load management at tributaries to manage the pollution load of tributaries with a high degree of pollution. In this study, the HSPF model, a watershed runoff model, was applied to the target areas consisting of 53 sub-watersheds to analyze the effect of water quality changes the in tributaries on the mainstream. Sub-watersheds were selected from the three major areas of the Paldang water system, including the drainage basins of the downstream of the South Han-River, Gyeongan stream, and North Han-River. As a result, BOD ranged from 0.17 mg/L to 4.30 mg/L, and was generally high in tributaries and decreased in the downstream watershed. TP ranged from 0.02 mg/L - 0.22 mg/L, and the watersheds that had a large impact on urbanization and livestock industry were high, and the North Han-River basin was generally low. In addition, a pollution source reduction scenario was selected to analyze the change in water quality by the amount of pollution load discharged at each unit watershed. The reduction rate of BOD and TP according to the scenario changes was simulated higher in the watershed of the downstream of the North Han-River and downstream and midstream of the Gyeongan stream. It was found that the benefits of water quality reduction from each sub-watershed efforts to improve water quality are greatest in the middle and downstream of each main stream, and it is judged that it can be served as basic data for the management of total tributaries.

Development of Depositional Landforms in Upstream Reach of Ulsan Sayeon Dam Lake (울산 사연호 상류의 퇴적지형 발달)

  • Chang, Mun-Gi
    • Journal of the Korean association of regional geographers
    • /
    • v.13 no.4
    • /
    • pp.409-421
    • /
    • 2007
  • The purpose of this paper is to consider the formation processes and depositional conditions of bars formed at the upper-stream part of Sayeon Dam since Sayeon Dam construction in 1964. Results of analyzing the shape characteristics of bars and their sediment grain size distribution are as follow: Firstly, bars are able to categorized as subaqueous bars (A, B), mid-channel bars(C, D), and tributary side-bars(E). Secondly, the outline of bars has longish along the flow path, and their height lowers more and more going towards downstream. Also the height of bar surface tend to heighten from flow path to mountain slope. However, the near part of A is comparatively higher than its distant part, A is defined as a subaqueous natural levee and back swamp. Thirdly, the average particle size of A and B become smaller toward mountain slope. In transportation style, ratio of suspended load become higher toward mountain slope. Fourthly, sorting is worse to very worse according with lake's random changable water level. Fifthly, bar A and B were formed by vertical sedimentation of sediments according as sediments transported along flow path in the subaqueous conditions were spreaded out of flow path. C and D were formed by bed load as flood level lowered. And E was formed by vertical sedimentation while stream flow stopped in tributary's mouth areas with the water level heightening.

  • PDF