• Title/Summary/Keyword: load ratio

Search Result 3,973, Processing Time 0.033 seconds

An Experimental Study on the Fire Resistance effect on load ratio and compressive strength of the CFT Column under loading in fire (CFT 기둥의 축력비 및 압축강도 변화에 따른 화재거동 영향인자에 관한 실험적 연구)

  • Cho, Kyung-Suk;Kim, Heung-Youl;Kim, Hyung-Jun;Kwon, In-Kyu;Park, Kyung-Hun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.04a
    • /
    • pp.371-376
    • /
    • 2010
  • The strength of steel material in a concrete filled steel tube (CFT) is reduced in fire, but the filled interior concrete structurally ensures the fire resistance due to its high thermal capacity. More, the contractibility of CFT is excellent since it can be constructed without form work. This research analyzed the interior concrete strength and deformation characteristics, which are the influence factors of the fire resistance of CFT, in proportion to the axial load ratio. The fire resistance performance according to changes of the axial load ratio showed great fluctuation. As $280{\times}280{\times}6$ CFT columns with the concrete strengths of 24 MPa and 40 MPa and the axial load ratios of 0.9, 0.6, and 0.2 in accordance with KS F 2257-1 and 7 were heated with loading to examine the fire resistance performance, the 24 MPa concrete exhibited the fire resistance time as 27, 113, and 180 minutes for the axial load ratios, 0.9, 0.6, and 0.2 respectively. In case of 40 MPa concrete, the fire resistance time were turned out to be 19 and 28 minutes for the axial load ratios, 0.9 and 0.6 respectively. The results of 40 MPa concrete showed the much lower fire resistance performance when comparing with those of 24 MPa concrete. The fire resistance performance was not increased significantly when the axial load ratio was reduced. Therefore, the deceased fire resistance performance of high strength concrete is assumed to be caused by the internal pressure increase upon the heat application.

  • PDF

Load-carrying capacity degradation of reinforced concrete piers due to corrosion of wrapped steel plates

  • Gao, Shengbin;Ikai, Toyoki;Ni, Jie;Ge, Hanbin
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.91-106
    • /
    • 2016
  • Two-dimensional elastoplastic finite element formulation is employed to investigate the load- carrying capacity degradation of reinforced concrete piers wrapped with steel plates due to occurrence of corrosion at the pier base. By comparing with experimental results, the employed finite element analysis method is verified to be accurate. After that, a series of parametric studies are conducted to investigate the effect of corrosion ratio and corrosion mode of steel plates located near the base of in-service pier P2 on load-carrying capacity of the piers. It is observed that the load-carrying capacity of the piers decreases with the increase in corrosion ratio of steel plates. There exists an obvious linear relationship between the load-carrying capacity and the corrosion ratio in the case of even corrosion mode. The degradation of load-carrying capacity resulted from the web's uneven corrosion mode is more serious than that under even corrosion mode, and the former case is more liable to occur than the latter case in actual engineering application. Finally, the failure modes of the piers under different corrosion state are discussed. It is found that the principal tensile strain of concrete and yield range of steel plates are distributed within a wide range in the case of slight corrosion, and they are concentrated on the column base when complete corrosion occurs. The findings obtained from the present study can provide a useful reference for the maintenance and strengthening of the in-service piers.

Special-Days Load Handling Method using Neural Networks and Regression Models (신경회로망과 회귀모형을 이용한 특수일 부하 처리 기법)

  • 고희석;이세훈;이충식
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.2
    • /
    • pp.98-103
    • /
    • 2002
  • In case of power demand forecasting, the most important problems are to deal with the load of special-days. Accordingly, this paper presents the method that forecasting long (the Lunar New Year, the Full Moon Festival) and short(the Planting Trees Day, the Memorial Day, etc) special-days peak load using neural networks and regression models. long and short special-days peak load forecast by neural networks models uses pattern conversion ratio and four-order orthogonal polynomials regression models. There are using that special-days peak load data during ten years(1985∼1994). In the result of special-days peak load forecasting, forecasting % error shows good results as about 1 ∼2[%] both neural networks models and four-order orthogonal polynomials regression models. Besides, from the result of analysis of adjusted coefficient of determination and F-test, the significance of the are convinced four-order orthogonal polynomials regression models. When the neural networks models are compared with the four-order orthogonal polynomials regression models at a view of the results of special-days peak load forecasting, the neural networks models which uses pattern conversion ratio are more effective on forecasting long special-days peak load. On the other hand, in case of forecasting short special-days peak load, both are valid.

Short-term Peak Load Forecasting using Regression Models and Neural Networks (회귀모형과 신경회로망 모형을 이용한 단기 최대전력수요예측)

  • Koh, Hee-Seog;Ji, Bong-Ho;Lee, Hyun-Moo;Lee, Chung-Sik;Lee, Chul-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.295-297
    • /
    • 2000
  • In case of power demand forecasting the most important problem is to deal with the load of special-days, Accordingly, this paper presents a method that forecasting special-days load with regression models and neural networks. Special-days load in summer season was forecasted by the multiple regression models using weekday change ratio Neural networks models uses pattern conversion ratio, and orthogonal polynomial models was directly forecasted using past special-days load data. forecasting result obtains % forecast error of about $1{\sim}2[%]$. Therefore, it is possible to forecast long and short special-days load.

  • PDF

Evaluation of Track Impact Factor in the Conventional Line (기존선 궤도의 충격계수 산정에 관한 연구)

  • 엄주환;유영화;엄기영
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.4
    • /
    • pp.239-245
    • /
    • 2003
  • In this paper, the track impact factor of conventional line was evaluated using the data for wheel load measured in field and the properties of current operating trains. The equation for track impact factor was presented through the statistical analysis of variational ratio in wheel load and compared with other design equations in domestic and foreign countries. A review on the safety of track system in conventional line was made from the relationship between the velocity and the corresponding impact factor. It was found that the impact factor from the proposed equation is a little less than the values from the equations adopted in both AREA and domestic railway, while it is same as the equation for continuous welded rail(CWR) in Japan. Therefore it could be said that the track satisfies a criteria for dynamic load caused by the train and the corresponding level of safety is guaranteed for dynamic load of the train

Wind tunnel tests on wind loads acting on steel tubular transmission towers under skewed wind

  • YANG, Fengli;NIU, Huawei
    • Wind and Structures
    • /
    • v.35 no.2
    • /
    • pp.93-108
    • /
    • 2022
  • Steel tubular towers are commonly used in UHV and long crossing transmission lines. By considering effects of the model scale, the solidity ratio and the ratio of the mean width to the mean height, wind tunnel tests under different wind speeds on twenty tubular steel tower body models and twenty-six tubular steel cross-arm models were completed. Drag coefficients and shielding factors of the experimental tower body models and cross-arm models in wind directional axis for typical skewed angles were obtained. The influence of the lift forces on the skewed wind load factors of tubular steel tower bodies was evaluated. The skewed wind load factors, the wind load distribution factors in transversal and longitudinal direction were calculated for the tubular tower body models and cross-arm models, respectively. Fitting expressions for the skewed wind load factors of tubular steel bodies and cross-arms were determined through nonlinear fitting analysis. Parameters for skewed wind loads determined by wind tunnel tests were compared with the regulations in applicable standards. Suggestions on the drag coefficients, the skewed wind load factors and the wind load distribution factors were proposed for tubular steel transmission towers.

A Study on Fatigue Life and Fatigue Crack Propagation Behavior of MMC (MMC의 피로수명과 피로균열전파거동에 관한 연구)

  • 허선철;박원조;최용범
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.127-133
    • /
    • 2002
  • The objective of this study is to investigate fatigue life and fatigue crack propagation behavior The experiment of fatigue life for MMC have been carried out for the stress ratio R=0.1 at 20Hz. Fatigue lift limit of AC4CH alloy is about 70 ㎫ and Fatigue limit of MMC has been increment to 120 ㎫, therefore, fatigue limits of MMC is about 71 % higher than that of AC4CH alloy Crack propagation tests on half-size CT specimen of thickness 12.5mm were conducted by using sinusoidal waveform. The crack length was monitored by compliance method. Test conditions were at 0.1 and 0.05 of load ratio at 10Hz of loading frequency and test load was 2.3kN. The effects of stress ratio on the fatigue crack propagation behavior for MMC was discussed within the Paris law. As the results of this study, Fatigue crack propagation increased with increasing the load ratio.

Electrical Characteristics of Disk-type Piezotransformer with Electrode Ratio of Driving and Generating Part (디스크형 압전변압기의 전극비에 따른 전기적 특성)

  • Lee, J.P.;Chae, H.I.;Jeong, S.H.;Kang, H.S.;Lee, C.H.;Shin, H.T.;Hong, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1490-1492
    • /
    • 2003
  • A new type of piezoelectric transformer using radial vibration of disk, poled with the same direction is proposed. The piezoelectric ceramics was composed to PZT-PMN-PSN. The surface ratio of driving electrode and generating electrode of the piezoelectric transformer ranges from 1.4:1 to 3:1. As a experimental result, both resonance frequency and step-up voltage ratio increased with increasing load resistance. The step-up voltage ratio was reached more than 60 times under no load resistance. The maximum efficiency of 97.7% at load resistance of 2k${\Omega}$ was obtained.

  • PDF

A Study on the Current & Load Unbalance Factor in using Linear & Nonlinear Load (선형 및 비선형 부하 사용시 전류 및 부하불평형률에 대한 연구)

  • Kim, Jong-Gyeum;Kim, Ji-Myeong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1291-1296
    • /
    • 2017
  • Single-phase and three-phase load can be used together in 3-phase 4-wire system. Single-phase and three-phase loads can be classified as linear loads without harmonics and nonlinear with harmonics. Single-phase linear loads are linear loads such as lamps and heat, and single-phase nonlinear loads are power converters such as rectifiers. It is recommended that the distribution of loads in the 3-phase, 4-wire distribution lines be evenly distributed within a certain range. However, harmonic currents generated in a nonlinear load flow on the neutral line and affect the phase current magnitude. The difference in the magnitude of the individual phase current due to the influence of the harmonic current present in the neutral line can produce a difference in current and load unbalance. In this study, current unbalance ratio and load unbalance ratio which can occur when a combination of linear and nonlinear loads are applied to 3-phase 4-wire distribution line are calculated.

Postfire reliability analysis of axial load bearing capacity of CFRP retrofitted concrete columns

  • Cai, Bin;Hao, Liyan;Fu, Feng
    • Advances in concrete construction
    • /
    • v.10 no.4
    • /
    • pp.289-299
    • /
    • 2020
  • A reliability analysis of the axial compressive load bearing capacity of postfire reinforced concrete (RC) columns strengthened with carbon fiber reinforced polymer (CFRP) sheets was presented. A 3D finite element (FE) model was built for heat transfer analysis using software ABAQUS. Based on the temperature distribution obtained from the FE analysis, the residual axial compressive load bearing capacity of RC columns was worked out using the section method. Formulas for calculating the residual axial compressive load bearing capacity of the columns after fire exposure and the axial compressive load bearing capacity of postfire columns retrofitted with CFRP sheets were developed. Then the Monte Carlo method was used to analyze the reliability of the axial compressive load bearing capacity of the RC columns retrofitted with CFRP sheets using a code developed in MATLAB. The effects of fire exposure time, load ratio, number of CFRP layers, concrete cover thickness, and longitudinal reinforcement ratio on the reliability of the axial compressive load bearing capacity of the columns after fire were investigated. The results show that within 60 minutes of fire exposure time, the reliability index of the RC columns after retrofitting with two layers of CFRPs can meet the requirements of Chinese code GB 50068 (GB 2001) for safety level II. This method is effective and accurate for the reliability analysis of the axial load bearing capacity of postfire reinforced concrete columns retrofitted with CFRP.