• Title/Summary/Keyword: load per unit area

Search Result 47, Processing Time 0.026 seconds

The Calculation of NPS Load per Unit Area in Orchard to the Nakdong River Basin (낙동강유역 과수재배지의 단위면적당 비점오염부하량 산정에 관한 연구)

  • Lee, Jae-Woon;Kwon, Heon-Gak;Yi, Youn-Jeong;Cheon, Se-Uk
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.6
    • /
    • pp.557-568
    • /
    • 2013
  • In this study, Calculated the nonpoint sources(NPS) load per unit area about various rainy events in vineyard of Nakdong River basin. NPS monitoring and calculation for NPS load per unit area were estimated from 'Investigation method of precipitation discharge(National Institute of Environmental Research, 2007)'. The evaluation of applicability for NPS load per unit by compared with prior research data and Total Maximum Daily Load(TMDL) data. Five target areas were each $2000m^2$, $1800m^2$, $1943m^2$, $2484m^2$, $864m^2$ and located in Gyeongsangbukdo Gyeongju, Gyeongsangbukdo Sangju, Gyeongsangnamdo Hapcheon in Korea. Since fruits were the only crop on the target area, the characteristics of stormwater discharge at survey sites could be evaluated independently. A total of 115 rainfall events in the Orchard area during five years(2008-2012) was surveyed, and 38 of them became stormwater discharge. In the Nakdong River watershed, average of event mean concentrations(EMCs) in Orchard area for biochemical oxyzen demand(BOD), Chemical oxyzen demand(COD), total nitrogen(T-N), total phosphorus(T-P) were 2.0mg/L, 10.1mg/L, 3.195mg/L, 0.578mg/L, respectively. NPS load per unit area in Orchard area showed BOD : $2.0kg/km^2{\cdot}day$, COD : $10.2kg/km^2{\cdot}day$, T-N : $3.220kg/km^2{\cdot}day$, T-P : $0.606kg/km^2{\cdot}day$.

A Study for the Selection Method of Control Area of Nonpoint Pollution Source (비점오염원 관리지역의 선정 기법에 관한 연구)

  • Park, Sanghyun;Jeong, Woohyeok;Yi, Sangjin;Lim, Bongsu
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.761-767
    • /
    • 2010
  • This study introduces a model of territorial analysis on Chungcheongnam-do Nonsan-chun valley area, which gives an example of a method of selecting the management area for non-point pollution source from land use to help eliminate its source. High discharge load per unit area signify high level of land ratio with high level of basic unit of development load (including factory sites, school sites, roadways), which mean that there are a significant level of urbanization. It is these areas with the examination of the water quality of the nearby river that should be considered as the management area for non-point pollution source. Thus, the management area for non-point pollution source should be sought in areas with high discharge load per unit area and high density of water pollution area. When level of drainage is high the pollution density level is relatively lower, and when the level of drainage is low the density level is relatively higher. The level of pollution from non-point pollution source is much lower with more water flowing through. The possible non-point pollution source areas that were selected with these standards were then examined with the distance from the river, the slope angle, land usage, elevation, BOD discharge density load, T-N discharge density load, T-P discharge density load, and were given a level one through five. Out of the possible areas Nonsan-si Yeonmu-eup Anshim-li was the densest area, and it was given level one. The level one area should be examined further with the field analysis to be selected as the actual management area for non-point pollution source.

Characteristics of Non-point Pollutant from Highway Toll Gate Landuse (고속도로 영업소지역에서의 비점오염물질 유출특성)

  • Lee, Eun-Ju;Son, Hyun-Geun;Kang, Hee-Man;Kim, Lee-Hyung
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.185-192
    • /
    • 2007
  • Newly constructed road is a requisite to be able to carry out BMPs (Best Management Practices) under TMDL(Total Maximum Daily Load) program of the Ministry of Environment. BMPs require pollutant source control during road construction and wash off reduction plan as well as maintenance practices subsequent to construction on the purpose of discharging the minimum wash off non-point source pollutants. The objective of this study is to provide supportive discharged data in evaluating the discharged non-point pollutant load from a highway toll gate area. It can be applied to manage non-point source pollutants on roads. The results validate the first flush phenomenon that it is known to be one of the wash off characteristics in paved area. In addition, the load per unit area and load per unit rainfall duration applying EMC are calculated. The mean load per unit rainfall duration is assessed to be $533.7mg/m^2-hr$ for TSS, $396.2mg/m^2-hr$ for COD, $17.0mg/m^2-hr$ for TN, and $4.8mg/m^2-hr$ for TP. These results show the unitload taken from monitoring are higher than the unit load suggested in the TMDL. It is important to adopt real pollutant unit for road to be able to perform BMP successfully.

  • PDF

Energy and Air Quality Benefits of DCV with Wireless Sensor Network in Underground Parking Lots

  • Cho, Hong-Jae;Jeong, Jae-Weon
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.2
    • /
    • pp.155-165
    • /
    • 2014
  • This study measured and compared the variation of ventilation rate and fan energy consumption according to various control strategies after installing wireless sensor-based pilot ventilation system in order to verify the applicability of demand-controlled ventilation (DCV) strategy that was efficient ventilation control strategy for underground parking lot. The underground parking lot pilot ventilation system controlled the ventilation rate by directly or indirectly tracking the traffic load in real-time after sensing data, using vehicle detection sensors and carbon monoxide (CO) and carbon dioxide ($CO_2$) sensor. The ventilation system has operated for 9 hours per a day. It responded real-time data every 10 minutes, providing ventilation rate in conformance with the input traffic load or contaminant level at that time. A ventilation rate of pilot ventilation system can be controlled at 8 levels. The reason is that a ventilation unit consists of 8 high-speed nozzle jet fans. This study proposed vehicle detection sensor based demand-controlled ventilation (VDS-DCV) strategy that would accurately trace direct traffic load and CO sensor based demand-controlled ventilation (CO-DCV) strategy that would indirectly estimate traffic load through the concentration of contaminants. In order to apply DCV strategy based on real-time traffic load, the minimum required ventilation rate per a single vehicle was applied. It was derived through the design ventilation rate and total parking capacity in the underground parking lot. This is because current ventilation standard established per unit floor area or unit volume of the space made it difficult to apply DCV strategy according to the real-time variation of traffic load. According to the results in this study, two DCV strategies in the underground parking lot are considered to be a good alternative approach that satisfies both energy saving and healthy indoor environment in comparison with the conventional control strategies.

A Study on Phosphorus Removal Effects Per Iron Surface Area in FNR Process (철전기분해장치(FNR)에서 철판의 표면적이 인제거에 미친 영향에 관한 연구)

  • Kim, Young-Gyu
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.6
    • /
    • pp.568-574
    • /
    • 2012
  • Objectives: The purpose of this experiment is to understand the phosphorus removal ratio effects of iron plates per unit of surface area through the iron electrolysis system, which consists of an anoxic basin, aerobic basin, and iron precipitation apparatus. Methods: Iron electrolysis, which uses an iron precipitation reactor in anoxic and oxic basins, consisted of iron plates with total areas of 400 $cm^2$, 300 $cm^2$ and 200 $cm^2$ respectively. The FNR process was operated with a hydraulic retention time and a sludge retention time of 12 hours and three days, respectively. Wastewater used in the experiments was prepared by dissolving $KH_2PO_4$ in influent water. Results: The iron plates 400 $cm^2$ (16.6 $mA/cm^2$), 300 $cm^2$ (13.3 $mA/cm^2$) and 200 $cm^2$ (7.3 $mA/cm^2$) in surface area in the phosphorus reactor had respective phosphorus of 2.4 mg/l, 2.7 mg/l and 3.2 mg/l in the effluent and phosphorus removal respective efficiencies of 90.3%, 89.1% and 87.1%. The effluent in the reactor, where the iron plate was not used, had relatively very low phosphorus removal efficiency showing phosphorus concentration of 15.3 mg/l and a phosphorus removal efficiency about 38.3%. Phosphorus removal per ferrous was 0.472 mgP/mgFe in the iron electrolysis system where the surface area of iron was low. Phosphorus pollution load per active surface area and the phosphorus removal efficiency had an interrelation of RE = -0.27LS + 89.0 (r = 0.85). Conclusion: With larger iron plate surface area, the elution of iron concentration and phosphorus removal efficiency was higher. The removal efficiency of phosphorus has decreased by increasing the initial phosphate concentration in the iron electrodes. This shows a tendency of decreasing phosphorus removal efficiency because of decreasing of iron deposition as the phosphorus pollution load per active surface area increases.

Study on the Evaluation of End Bearing Capacity of Pre-Bored Piles for the SPT-N value (SPT-N값에 따른 매입말뚝의 선단지지력 특성 연구)

  • Seo, Dong-Nam;Choi, Sang-Ho;Kim, Jin-Sik;Kim, Seong-Cheol;Lee, Dong-Hyeon;Cho, Seong-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.133-134
    • /
    • 2020
  • The equation of end bearing capacity is applied differently depending on the type of pile, construction method, and load characteristics considering the construction standards. The bearing capacity equation of the design standard is presented in various ways according to the design conditions such as construction method and ground condition, etc. but, It does not reflect the ground strength according to the SPT-N value of weathered rock. This study analyzed the trend of allowable tip bearing capacity by pile diameter through about 480 dynamic loading tests conducted for the construction/quality management of piles for the last 6 years since 2015. The equation for the ultimate end bearing capacity per unit area according to the SPT-N value is presented. The proposed formula of ultimate end bearing capacity per unit area can be applied in the range of 15,000kN/m2 to 30,000kN/m2. The proposed formula, which complements the existing formula, enables pile design and construction/quality management.

  • PDF

A Study on the Process of Energy Demand Prediction of Multi-Family Housing Complex in the Urban Planning Stage (공동주택단지의 개발계획단계 시 에너지 수요예측 프로세스에 관한 연구)

  • Mun, Sun-Hye;Huh, Jung-Ho
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.304-310
    • /
    • 2008
  • Currently energy use planning council system is mandatory especially for the urban development project planned on a specified scale or more. The goal of existing demand prediction was to calculate the maximum load by multiplying energy load per unit area by building size. The result of this method may be exaggerated and has a limit in the information of period load. The paper suggests a new forecasting process based on standard unit household in order to upgrade the limit in demand prediction method of multi-family housing complex. The new process was verified by comparing actual using amount of multi-family housing complex to forecasting value of energy use plan.

  • PDF

A Study on the Spatial Strength and Cluster Analysis at the Unit Watershed for the Management of Total Maximum Daily Loads (다변량통계분석을 이용한 수질오염총량관리 단위유역별 오염물질 배출특성 분석 - 한강수계를 중심으로 -)

  • Choi, Ok Youn;Kim, Ki Hoon;Han, Ihn Sup
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.6
    • /
    • pp.700-714
    • /
    • 2015
  • The characteristic of the water quality and pollutant discharge was analyzed at the units watershed of the total amount management in Han-river basin, and after classified in a similar area by multivariate statistical analysis, the main trend such as the water quality trend and pollutant discharge characteristic were analyzed. As a result of this study, the density of the pollutant at the unit watershed is not necessarily identified as discharge density, and the primary management watershed and targeted substances were analyzed depending on the operating status of the environmental infrastructure in watershed and the main pollution factor and discharge path per pollutants. As a result of cluster analysis, watersheds were classified into four groups according to discharge characteristics. It will be used when selecting target area of primary management that is appropriate to the characteristics of each river and establishing efficient water quality improvement plans.

Nutrient Balance in the Paddy Fields Watershed with a Source of River Water (하천관개지역 광역논에서의 영양물질의 물질수지)

  • Lee, Jeong Beom;Lee, Jae Yong;Li, Si Hong;Jang, Jeong Ryeol;Jang, Ik Geun;Kim, Jin Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.5
    • /
    • pp.11-19
    • /
    • 2014
  • The objective of this research was to investigate concentration and load of nutrients such as total nitrogen (TN), nitrate nitrogen ($NO_3$-N) total phosphorous (TP), and phosphate phosphorous ($PO_4$-P) in a 23.4-ha paddy fields watershed with river water source. Water samples for irrigation water, drainage water, ponded water and groundwater were collected, and irrigation and drainage water were measured at 5~10 day intervals during normal days and at 2~6 hours intervals during three storm events. The amount of irrigation water in the study area was over 2,000 mm, which is almost identical to that in the area irrigated from a large reservoir but much more than that in the area irrigated from a pumping station. Mean flow-weighted concentrations of TN and TP in irrigation water were 2.8 and 0.15 mg/L, respectively, higher than those in the area irrigated from a large reservoir or a pumping station. The ratios of irrigation load to total inflow load for TN and TP were 88 %, and the ratios of surface outflow load to total outflow load for TN and TP were over 90 %, indicating that total nutrient load may be greatly affected by water management. The nutrient loads per area in the study area were estimated as TN 21.1 kg/ha and TP 1.1 kg/ha. Especially, the TP load per area in the study area was smaller than that in the area irrigated from a large reservoir or a pumping station. This may be because outflow load is not high likely due to sedimentation of particulate P and irrigation water load is high due to high TP concentration in irrigation water and high amount of irrigation water.

Correlation Analysis on the Runoff Pollutants from a Small Plot Unit in an Agricultural Area

  • Kang, Meea;Choi, Byoung-Woo;Lee, Jae-Kwan
    • Environmental Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.191-195
    • /
    • 2010
  • This study was carried out to investigate the important factors relating to runoff and pollutant loads in a plot unit located in an agricultural area. Of the precipitation parameters, such as total precipitation, days since last rainfall (ADD, the rainfall was more than 10mm) and average rainfall intensity on runoff, the strongest effect was obtained due to total precipitation, but the rainfall intensity showed a slightly positive correlation. It was expected that both variables, i.e. total precipitation and rainfall intensity, would lead to the generation of greater runoff. In contrast, runoff was negatively correlated with ADD, which is understandable because more infiltration and less runoff would be expected after a long dry period. The TSS load varied greatly, between 75.6 and $5.18{\times}10^4g$, per event. With the exception of TN, the TSS, BOD, COD and TP loads were affected by runoff. The correlations of these items were proportional to the runoff volume, with correlation coefficients (r) greater than 0.70, which are suitable for use as NPS model data. The TSS load showed very good relationships with organics (BOD & COD) and nutrients (TN & TP), with correlation coefficients greater than 0.79. Therefore, the removal of TSS is a promising factor for protecting water basins.