• 제목/요약/키워드: load influence

검색결과 2,030건 처리시간 0.027초

굴착기의 부하율에 따른 실작업 질소산화물 배출 특성 연구 (Study on Real-Work NOx Emission Characteristics according to Load Factor of Excavator)

  • 신달호;박윤서;유철;박수한
    • 드라이브 ㆍ 컨트롤
    • /
    • 제20권3호
    • /
    • pp.1-8
    • /
    • 2023
  • The purpose of this study was to investigate and compare the impact of engine load on the emission characteristics of excavator engines, with the aim of improving the method for calculating the emission inventory of construction machinery. The engine load in excavators is directly correlated with the operational workload, and variations in the load factor (LF) can significantly influence the emission inventory. Thus, on-board diagnostic (OBD) data from an excavator at a construction site were systematically collected to measure engine output and emissions. The results revealed discernible differences in emissions based on engine load, even when the average excavator engine performance remained constant. This highlights the significant influence of the type and characteristics of the work being carried out on emission characteristics. Making realistic adjustments to the LF used in emission calculation formulas emerges as a crucial strategy for environmental improvement. Moreover, the analysis of the effects of engine load on emissions from excavators provides valuable insights for enhancing environmental protection measures.

쇄빙연구선 ARAON호의 국부 빙하중 추정을 위한 영향계수행렬의 보완 (Enhanced Influence Coefficient Matrix for Estimation of Local Ice Load on the IBRV ARAON)

  • 조성록;최경식;손범식;정성엽;하정석
    • 대한조선학회논문집
    • /
    • 제58권5호
    • /
    • pp.330-338
    • /
    • 2021
  • This paper focuses on the improvement of the influence coefficient matrix method for estimation of local ice load on the icebreaking research vessel ARAON. The influence coefficient matrix relates ice pressure on the hull plate to the measured/calculated hull strain/stress. Conventionally von Mises equivalent stresses representing hull stresses and ice pressure acting on the hull plate are utilized to assemble the influence coefficient matrix. Because of the three dimensional features of the ship-ice collision process, an enhanced method to assemble the influence coefficient matrix is derived considering ice loads in the X, Y, and Z direction simultaneously. Furthermore the location of ice loads acting on hull-plate may fall outside the measuring sensor area, and the enhanced influence coefficient matrix is modified to reduce the difference between the actual and the estimated ice loads by expanding the domain outward from the sensor area. The developed method for enhanced influence coefficient matrix is applied to IBRV ARAON during the 2019 Antarctic ice field test and the local ice loads in three directions are efficiently calculated compared to those by a conventional method.

터널 내 폭발에 의한 지표 변위에 관한 수치해석적 연구 (Numerical Analysis of Surface Displacement Due to Explosion in Tunnel)

  • 박훈
    • 화약ㆍ발파
    • /
    • 제38권4호
    • /
    • pp.26-36
    • /
    • 2020
  • 지하공간의 이용범위 확장 및 활용이 증가함에 따라 테러리스트들에 의한 지하 내부 폭발의 발생 가능성이 증가하고 있다. 본 연구에서는 심도 50m의 심도에 굴착된 원형 터널을 모델링한 후, 터널의 내부에 폭발하중을 가하였다. 폭발하중은 ATF(Bureau of Alcohol, Tobacco, and Firearms)에서 제시하는 6종류의 운반용 차량에 대한 최대 폭약량의 폭발하중을 산정하였다. 원형 터널 주변 지반은 국내 터널 설계에서 제시하는 지보패턴에 따른 3종류의 암반등급을 선정하였다. 비선형 동적해석을 수행하여 폭발하중과 지반 특성을 매개변수로 지표 변위를 분석하여 지상 구조물의 영향에 대해 평가하였다. 해석결과, 1등급암에 대해서는 지반의 융기에 대한 영향을 고려해야 하며, 2등급암과 3등급암은 부등침하에 대한 영향을 고려해야 한다. 특히, 3등급암은 40m 이내의 지상 구조물에 대해서는 정밀 분석이 요구된다. 또한 지표 변위는 탄성계수에 의한 영향이 주요인인 것으로 판단된다.

Influence of surface irregularity on dynamic response induced due to a moving load on functionally graded piezoelectric material substrate

  • Singh, Abhishek K.;Negi, Anil;Koley, Siddhartha
    • Smart Structures and Systems
    • /
    • 제23권1호
    • /
    • pp.31-44
    • /
    • 2019
  • The present study investigate the compressive stress, shear stress, tensile stress, vertical electrical displacement and horizontal electrical displacement induced due to a load moving with uniform velocity on the free rough surface of an irregular transversely isotropic functionally graded piezoelectric material (FGPM) substrate. The closed form expressions ofsaid induced stresses and electrical displacements for both electrically open condition and electrically short condition have been deduced. The influence of various affecting parameters viz. maximum depth of irregularity, irregularity factor, parameter of functionally gradedness, frictional coefficient of the rough upper surface, piezoelectricity/dielectricity on said induced stresses and electrical displacements have been examined through numerical computation and graphical illustration for both electrically open and short conditions. The comparative analysis on the influence of electrically open and short conditions as well as presence and absence of piezoelectricity on the induced stresses and induced electrical displacements due to a moving load serve as the salient features of the present study. Moreover, some important peculiarities have also been traced out by means of graphs.

Direct kinematic method for exactly constructing influence lines of forces of statically indeterminate structures

  • Yang, Dixiong;Chen, Guohai;Du, Zongliang
    • Structural Engineering and Mechanics
    • /
    • 제54권4호
    • /
    • pp.793-807
    • /
    • 2015
  • Constructing the influence lines of forces of statically indeterminate structures is a traditional issue in structural engineering and mechanics. However, the existing kinematic method for establishing these force influence lines is an indirect or mixed approach by combining the force method with the theorem of reciprocal displacements, which is yet inconsistent with the kinematic method for statically determinate structure. This paper proposes the direct kinematic method in conjunction with the load-displacement differential relation for exactly constructing influence lines of reaction and internal forces of indeterminate structures. Firstly, through applying the principle of virtual displacement, the formula for influence lines of reaction and internal forces of indeterminate structure via direct kinematic method is derived based on the released structure. Then, a computational approach with a clear concept and unified procedure as well as wide applicability based on the load-displacement differential relation of beam is suggested to achieve conveniently the closed-form expression of force influence lines, and exactly draw them. Finally, three representative examples for constructing force influence lines of statically indeterminate beams and frame illustrate the superiority of the proposed method.

Influence of masonry infill on reinforced concrete frame structures' seismic response

  • Muratovic, Amila;Ademovic, Naida
    • Coupled systems mechanics
    • /
    • 제4권2호
    • /
    • pp.173-189
    • /
    • 2015
  • In reality, masonry infill modifies the seismic response of reinforced concrete (r.c.) frame structures by increasing the overall rigidity of structure which results in: increasing of total seismic load value, decreasing of deformations and period of vibration, therefore masonry infill frame structures have larger capacity of absorbing and dissipating seismic energy. The aim of the paper is to explore and assess actual influence of masonry infill on seismic response of r.c. frame structures, to determine whether it's justified to disregard masonry infill influence and to determine appropriate way to consider infill influence by design. This was done by modeling different structures, bare frame structures as well as masonry infill frame structures, while varying masonry infill to r.c. frame stiffness ratio and seismic intensity. Further resistance envelope for those models were created and compared. Different structures analysis have shown that the seismic action on infilled r.c. frame structure is almost always twice as much as seismic action on the same structure with bare r.c. frames, regardless of the seismic intensity. Comparing different models resistance envelopes has shown that, in case of lower stiffness r.c. frame structure, masonry infill (both lower and higher stiffness) increased its lateral load capacity, in average, two times, but in case of higher stiffness r.c. frame structures, influence of masonry infill on lateral load capacity is insignificant. After all, it is to conclude that the optimal structure type depends on its exposure to seismic action and its masonry infill to r.c. frame stiffness ratio.

합성구조체의 경계면 슬립이 거동과 성능에 미치는 영향 (Effects of Slip for Interface on Behavior and Capacity in Hybrid Structure)

  • 정연주;정광회;김병석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.385-390
    • /
    • 2001
  • This paper presents a nonlinear analysis technique with slip, the effects of slip modulus and composite action by shear connector on behavior and capacity in composite structure of sandwich system. As a results of this study, it proved that the slip modulus, in case of shear behavior, seldom influence load-resistance capacity such as yield and ultimate load, but in case of flexural behavior, it appropriately influence load-resistance capacity because of stress redistribution by slip. In case of flexural behavior, analysis result for perfect-composite results in over-estimation and perfect-slip results in under-estimation on behavior and capacity. Therefore, it is desirable to model steel-concrete interface with partial-composite. The effects of slip on behavior and capacity are less in case of positive composite than loosely composite, and it proved that composite action by shear connector improve the load-resistance capacity of this system.

  • PDF

분산형 복합재료의 강화재 손상 증분형 이론 (Incremental Theory of Reinforcement Damage in Discontinuously-Reinforced Composite)

  • 김홍건
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2000년도 춘계학술대회 논문집(Proceeding of the KOSME 2000 Spring Annual Meeting)
    • /
    • pp.122-126
    • /
    • 2000
  • In particle or short-fiber reinforced composites cracking of the reinforcements is a significant damage mode because the broken reinformcements lose load carrying capacity . The average stress in the inhomogeneity represents its load carrying capacity and the difference between the average stresses of the intact and broken inhomogeneities indicates the loss of load carrying capacity due to cracking damage. The composite in damage process contains intact and broken reinforcements in a matrix, An incremental constitutive relation of particle or short-fiber reinforced composites including the progressive cracking damage of the reinforcements have been developed based on the Eshelby's equivalent inclusion method and Mori-Tanaka's mean field concept. influence of the cracking damage on the Eshelby's equivalent inclusion method and Mori-Tanaka's mean field concept. Influence of the cracking damage on the stress-strain response of the composites is demonstrated.

  • PDF

표면 열전달율의 복사.대류성분 분리와 비정상 열부하 계산에 관한 연구 (A Study on the Radiation and Convection Component Separated from Surface Combined Heat Transfer Coefficient on Dynamic Heat Load Simulation)

  • 김영탁;최창호
    • 한국태양에너지학회 논문집
    • /
    • 제25권3호
    • /
    • pp.1-9
    • /
    • 2005
  • The purpose of this paper was to analyze the influence of radiation and convection component separated from surface heat combined transfer coefficient on dynamic Heat load simulation. In general, it was not considered the mutual radiation of walls that heat load simulation calculated by surface combined heat transfer coefficient. In order to solve this problem, we had developed new simulation program to calculate radiation heat transfer and convection heat transfer respectively, and verified the influence of radiation component with this new program, in indoor heat transfer process.

현가장치 볼 조인트의 동적 모델 연구 (Dynamic Modeling of Ball Joint in Suspension)

  • 김숙희;한형석;노규석;김명규;김기훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1561-1564
    • /
    • 2003
  • In the dynamic analysis model of full vehicles, the ball joint is usually modeled as an ideal joint. Searching a ball joint, the engineering plastic covers metal and the plastic has little compliance. It is expected that the compliance will physically have an influence on load transfer. This thesis presents a dynamic model considering the compliance of a ball joint, and studies an influence related to load transfer. It models the compliance of a ball joint to 3 directional spring. Likewise, it researches the load of a ball joint via a four-post simulation of a full vehicle, comparing with a model considered compliant and the model of an ideal joint. As a result, the difference between the compliance and the ideal joint model was determined. For this reasons, to conduct precision load prediction for durability analysis, dynamic analysis considering the compliance of bali joint should be required.

  • PDF