• 제목/요약/키워드: load distribution

Search Result 3,598, Processing Time 0.483 seconds

Load Flow Calculation and Short Circuit Fault Transients in AC Electrified Railways

  • Hosseini, Seyed Hossein;Shahnia, Farhad
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2203-2206
    • /
    • 2005
  • A load flow and short circuit fault simulation of AC electrified railway distribution systems is presented with DIgSILENT PowerFactory software. Load flow of electrified railways distribution system with concerning multi train lines and dynamic characteristics of train load is studied for different time laps. The dynamic characteristics of train load in starting and braking conditions with different starting and stopping times and its moving positions makes the load flow complicated so there is a great need in studying the effects of electrified railways on load flow. Short circuit fault transients is also studied and simulated for both power system or traction distribution system and their effects on the operation of the train sets is investigated.

  • PDF

Avoiding Energy Holes Problem using Load Balancing Approach in Wireless Sensor Network

  • Bhagyalakshmi, Lakshminarayanan;Murugan, Krishanan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1618-1637
    • /
    • 2014
  • Clustering wireless sensor network is an efficient way to reduce the energy consumption of individual nodes in a cluster. In clustering, multihop routing techniques increase the load of the Cluster head near the sink. This unbalanced load on the Cluster head increases its energy consumption, thereby Cluster heads die faster and create an energy hole problem. In this paper, we propose an Energy Balancing Cluster Head (EBCH) in wireless sensor network. At First, we balance the intra cluster load among the cluster heads, which results in nonuniform distribution of nodes over an unequal cluster size. The load received by the Cluster head in the cluster distributes their traffic towards direct and multihop transmission based on the load distribution ratio. Also, we balance the energy consumption among the cluster heads to design an optimum load distribution ratio. Simulation result shows that this approach guarantees to increase the network lifetime, thereby balancing cluster head energy.

A Study on the Effect of Load Variations in a Line to Ground Fault Location Algorithm Using Iterative Method for Distribution Power Systems (반복계산법을 사용한 배전계통 1선지락사고 고장거리 계산 알고리즘에서 부하변동의 영향 고찰)

  • 최면송;이승재;현승호;진보건;이덕수
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.7
    • /
    • pp.355-362
    • /
    • 2003
  • The fault analysis problem of a distribution network has many difficulties comes from the unbalance of loads or networks and the lacks of load information. The unbalance of loads or networks make the fault location difficult when it use the classical sequence transformation. Moreover the amount of load in the distribution networks fluctuates with time. This paper introduces a recent fault location algorithm using iterative method which handle the unbalance of the problem. But, the fault location errors comes from the load fluctuations still left. For the real application of the new fault location algorithm in distribution networks, this paper studied the effect of the load fluctuations in the algorithm.

A Study on Load distribution Effect for Bridge Structures (교량 구조의 하중분배 효과에 관한 연구)

  • 정철헌;오병환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.234-239
    • /
    • 1992
  • Design live load and girder distribution factors play an important role in the current design procedures. The fraction of vehicle load effect transferred to a single member may be selected in accordance with current KBDC. However, the specified values, both design load and distribution factors involve considerable inaccuracies, These inaccuracies relate to the uncertainties of the structural analysis, especially any bias and scatter which drives from the use of simplified load distribution factors. In this study , based on several field measurement and finite element analysis, live load distribution effects of current KBDC are evaluated. The final values of the bias and coefficient of variation of "g"according to bridge type are determined. The bridge types are reinforced concrete slab, prestressed concrete girder and steel l-beam.el l-beam.

  • PDF

A Section Load Management Method using Daily Load Curve in Distribution Systems (일부하 곡선을 이용한 배전계통 구간부하 관리방법)

  • Lim, Seong-Il
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.6
    • /
    • pp.47-52
    • /
    • 2012
  • DAS(Distribution Automation System) is equipped with several software applications such as service restoration, loss minimization, and protective relay coordination. The software applications of DAS are very sensitive to the amount of section load being carried by a particular section of distribution lines. Moreover, each software application requires a different parameter of the section load according to its purpose. Therefore, This paper proposes a new section load management method using real-time measurement data of the distribution lines. In order to provide accurate data to DAS applications, this method considers section loads in terms of the relationship of power versus time. In order to establish that the proposed method is feasible, a performance-testing simulator was developed, and case studies were conducted for a modified real distribution network.

Numerical investigations of pile load distribution in pile group foundation subjected to vertical load and large moment

  • Ukritchon, Boonchai;Faustino, Janine Correa;Keawsawasvong, Suraparb
    • Geomechanics and Engineering
    • /
    • v.10 no.5
    • /
    • pp.577-598
    • /
    • 2016
  • This paper presents a numerical study of pile force distribution in a pile group foundation subjected to vertical load and large moment. The physical modeling of a pile foundation for a wind turbine is analyzed using 3D finite element software, PLAXIS 3D. The soil profile consists of several clay layers, which are modeled as Mohr-Coulomb material in an undrained condition. The piles in the pile group foundation are modeled as special elements called embedded pile elements. To model the problem of a pile group foundation, a small gap is created between the pile cap and underlying soil. The pile cap is modeled as a rigid plate element connected to each pile by a hinge. As a result, applied vertical load and large moment are transferred only to piles without any load sharing to underlying soil. Results of the study focus on pile load distribution for the square shape of a pile group foundation. Mathematical expression is proposed to describe pile force distribution for the cases of vertical load and large moment and purely vertical load.

A Study of Reconfiguration for Load Balancing in Distribution Power System (배전계통 부하 균등화를 위한 재구성에 관한 연구)

  • Seo, Gyu-Seok;Baek, Young-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1360-1366
    • /
    • 2007
  • In this paper, the load balancing which is one of the distribution power system's operation purposes was studied. Reconfiguration of Distribution power system presents that the configuration is changed by changing the switch on/off status which exists in the system according to the mentioned purpose. Through this method, the load of distribution power system is shown to be balanced. As a characteristic of complicated distribution power system, system is designed by being applied by OOP(Object Oriented Programming) method which connected more flexibly than existing Procedural Programming method, and the process of calculating the distflow and the loss of configurated system is shown. In addition, this paper suggests more efficient method compared by the results of reconfiguration on the purpose of the loss minimization and by the result of distribution power system reconfiguration on the purpose of load balancing. Moreover, it searches for the method to approach the global optimal solution more quickly.

The Standard for Installation of Automated Distribution Switch-gear in Multi-Line Faults (다중선로 고장을 고려한 배전자동화용 개폐기 설치기준)

  • Lee, Jung-Ho;Ha, Bok-Nam;Cho, Nam-Hun;Lim, Sung-Il
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1079-1081
    • /
    • 1999
  • This paper presents the standard for dividing/tieing the distribution lines and installing optimally the automated distribution switch-gear in multi-line faults. Also this paper recommends the distribution system design in consideration of the live load transfer of the concentrated load in the last load-side. This recommendation will be useful for designing the distribution network, developing the feeder automation software and operating the distribution automation system.

  • PDF

Effect of superstructure-abutment continuity on live load distribution in integral abutment bridge girders

  • Dicleli, Murat;Erhan, Semih
    • Structural Engineering and Mechanics
    • /
    • v.34 no.5
    • /
    • pp.635-662
    • /
    • 2010
  • In this study, the effect of superstructure-abutment continuity on the distribution of live load effects among the girders of integral abutment bridges (IABs) is investigated. For this purpose, two and three dimensional finite element models of several single-span, symmetrical integral abutment and simply supported (jointed) bridges (SSBs) are built and analyzed. In the analyses, the effect of various superstructure properties such as span length, number of design lanes, girder size and spacing as well as slab thickness are considered. The results from the analyses of two and three dimensional finite element models are then used to calculate the live load distribution factors (LLDFs) for the girders of IABs and SSBs as a function of the above mentioned parameters. LLDFs for the girders are also calculated using the AASHTO formulae developed for SSBs. Comparison of the analyses results revealed that the superstructure-abutment continuity in IABs produces a better distribution of live load effects among the girders compared to SSBs. The continuity effects become more predominant for short span IABs. Furthermore, AASHTO live load distribution formulae developed for SSBs lead to conservative estimates of live load girder moments and shears for short-span IABs.

Modeling of Load Element for a Low Voltage DC Distribution System (저전압 DC 배전시스템 구성요소의 부하 모델링)

  • Gwon, Gi-Hyeon;Han, Joon;Oh, Yun-Sik;Kim, Eung-Sang;Kim, Chul-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.6
    • /
    • pp.113-121
    • /
    • 2014
  • At the end of the 19th century, a battle known as the War of the Currents was fought over how electricity would be generated, delivered, and utilized. In this day and age, there has been a growing interest in Green Growth policies as countermeasures against global warming. As a result of these policies, the use of new and renewable energy needed a power converter to replace fossil fuels has expanded. To reduce power consumption through high efficiency of conversion, Low Voltage DC (LVDC) distribution systems are suggested as an alternative. In a DC distribution system, DC loads are very efficient due to decrease the stages of power conversion. If the LVDC distribution system is adopted, not only DC load but also existing AC loads should be connected with LVDC system. Thus, the modeling of two loads is needed to analyze the DC distribution system. This paper, especially, is focused on the modeling of resistive load and electronic load including power electronic converters using ElectroMagnetic Transient Program (EMTP) software.