• Title/Summary/Keyword: load displacement curve

Search Result 307, Processing Time 0.027 seconds

Seismic Fragility Analysis of Container Crane Considering Far-Fault and Near-Fault Ground Motion Characteristics (원거리와 근거리 지진파의 특성을 고려한 항만 컨테이너 크레인의 지진취약도 분석)

  • Park, Ju-Hyun;Min, Jiyoung;Lee, Jong-Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.83-90
    • /
    • 2023
  • The recent increase in earthquake activities has highlighted the importance of seismic performance evaluation for civil infrastructures. In particular, the container crane essential to maintaining the national logistics system with port operation requires an exact evaluation of its seismic response. Thus, this study aims to assess the seismic vulnerability of container cranes considering their seismic characteristics. The seismic response of the container crane should account for the structural members' yielding and buckling, as well as the crane wheel's uplifting derailment in operation. The crane's yielding and buckling limit states were defined using the stress of crane members based on the load and displacement curve obtained from nonlinear static analysis. The derailment limit state was based on the height of the rail, and nonlinear dynamic analysis was performed to obtain the seismic fragility curves considering defined limit states and seismic characteristics. The yield and derailment probabilities of the crane in the near-fault ground motion were approximately 1.5 to 4.7 and 2.8 to 6.8 times higher, respectively, than those in the far-fault ground motion.

Seismic behavior of RC frames with partially attached steel shear walls: A numerical study

  • Kambiz Cheraghi;Majid Darbandkohi;Mehrzad TahamouliRoudsari;Sasan Kiasat
    • Earthquakes and Structures
    • /
    • v.25 no.6
    • /
    • pp.443-454
    • /
    • 2023
  • Steel shear walls are used to strengthen steel and concrete structures. One such system is Partial Attached Steel Shear Walls (PASSW), which are only connected to frame beams. This system offers both structural and architectural advantages. This study first calibrated the numerical model of RC frames with and without PASSW using an experimental sample. The seismic performance of the RC frame was evaluated by 30 non-linear static analyses, which considered stiffness, ductility, lateral strength, and energy dissipation, to investigate the effect of PASSW width and column axial load. Based on numerical results and a curve fitting technique, a lateral stiffness equation was developed for frames equipped with PASSW. The effect of the shear wall location on the concrete frame was evaluated through eight analyses. Nonlinear dynamic analysis was performed to investigate the effect of the shear wall on maximum frame displacement using three earthquake records. The results revealed that if PASSW is designed with appropriate stiffness, it can increase the energy dissipation and ductility of the frame by 2 and 1.2 times, respectively. The stiffness and strength of the frame are greatly influenced by PASSW, while axial force has the most significant negative impact on energy dissipation. Furthermore, the location of PASSW does not affect the frame's behavior, and it is possible to have large openings in the frame bay.

Uplift Capacity of Spiral Bar through the Model Experiment (모형실험을 통한 스파이럴 기초의 인발저항력 검토)

  • Choi, Man Kwon;Yun, Sung Wook;Kim, Ha Neul;Lee, Si Young;Kang, Dong Hyeon;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.202-209
    • /
    • 2015
  • This study compared and analyzed the measurements of pullout load according to the depth of reclamation in the foundation, compaction ratio of soil, spiral diameter, and soil textures in an experiment with a model and reached the following conclusions: The comparison results of extreme pullout load between farm and reclaimed soil show that farmland soil recorded a score that was 1.2~3 times higher than that of reclaimed soil. The investigator measured pullout load in farmland and reclaimed soil and observed a tendency of rising extreme pullout load according to the increasing depth of reclamation and compaction ratio with a similar load-displacement curve between the two types of soil. Extreme pullout load made a greater increase by the rising size of diameter than the increasing depth of reclamation, also making a considerably bigger increase according to the rising compaction ratio than the other conditions. Therefore, the spirals bar is expected to be available in soft soil foundation, as well as farmland as increasing buried deep of foundations, compaction rate, diameter of the spiral, ect.

Analysis of Plastic Hinge of Pile-Bent Structure with Varying Pile Diameters (단일형 현장타설말뚝의 소성힌지를 고려한 최적설계법 제안)

  • Ahn, Sang-Yong;Jeong, Sang-Seom;Kim, Jae-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.349-356
    • /
    • 2010
  • In this study, a new design method of pile bent structure considering plastic hinge was proposed on the basis of the beam-column model. Based on the analysis results, it is found that the positioning of plastic hinge on the pile bent structure was influenced by nonlinear behavior of material and p-$\Delta$ effect. Moreover, concrete cracking began to occur at the joint section between the pile and column in case of pile bent structure with different cross-sections. The plastic hinge can be developed on the pile bent structure when large displacement was occurred, and pile bent structures can be maintained well only if it is developed on the column part. Therefore, in this study, the optimized cross-section ratio between column and pile was analyzed to induce the plastic hinge at the joint section between the pile and column. Based on this, the optimized diameter ratio of pile and column can be obtained below the inflection point of the bi-linear curve depending on the relations between column-pile diameter ratio($D_c/D_p$) and normalized lateral cracking load ratio($F/F_{Dc=Dp}$). And through this study, it is founded that in-depth limit($L_{As}$=0.4%) normalized by the pile length($L_P$) are proportionally decreased as the pile length($L_P/D_P$) increases up to $L_P/D_P$=17.5, and beyond that in-depth limit converges to a constant value. Finally, it is found that the proposed limit depth by taking into account the minimum concrete-steel ratio would be more economical design of the pile bent structure.

  • PDF

A Study on Finite Element Methods for HSS(Hollow Square Section) Steel Columns Strengthened with Carbon Fiber Reinforced Polymer Plastic(CFRP) Sheets (탄소섬유쉬트(CFRP Sheets)로 보강된 각형강관(HSS)기둥의 유한요소해석 연구)

  • Park, Jai Woo;Yoo, Jung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.3
    • /
    • pp.185-194
    • /
    • 2016
  • This paper presents the finite element method results for HSS(Hollow Square Section) steel columns strengthened with Carbon Fiber Reinforced Polymer Plastic(CFRP) sheets. 6 specimens were fabricated and the specimen groups were non-compact short columns, slender short columns, and non-compact long columns. Test parameter was the number of CFRP ply. The finite element analysis was performed by using ANSYS Workbench V.14.0 and the results of FEM were compared with those of Test for failure mode, load-displacement curve, maximum load, and initial stiffness. The comparisons between experimental observations and computed results show that the analyses provided good correlation to actual behavior. Finally, the buckling stress were calculated according to the AISC cold-formed structure provision and the retrofitting effect were verified for each section type.

Evaluation on Flexural Behavior of Hybrid Beams with Rigid Joint Connecting Steel and Precast Concrete Elements (강재 보-PC 보가 강접합 연결된 하이브리드 보의 휨 거동 평가)

  • Seo, Eun-A;Yang, Keun-Hyeok;Hong, Seung-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.13-21
    • /
    • 2016
  • A hybrid precast concrete beam system with a simple rigid connection was proposed to compensate the limitations and shortcomings of the conventional bolt connection associated with the H-beams embedded into concrete beams. Three beam specimens with fixed both ends were tested under one-point top cyclic loading to explore the effectiveness of the developed hybrid beam system in transferring externally applied flexure to a column. The main parameter considered was the length ($L_s$) of H-beam, which was selected to be $0.25L_I$, $0.5L_I$, and $1.0L_I$, where $L_I$ is the distance from the support to the point of inflection. All beam specimens showed a better displacement ductility ratio than the reinforced concrete beams with the same longitudinal reinforcement index, indicating that the cyclic load-deflection curve and ductility were insignificantly affected by $L_s$. The continuous strain distribution along the beam length and the prediction of the ultimate load based on the collapse mechanism ascertained the structural adequacy of the developed rigid connection.

Failure of composite sandwich joints under pull-out loading (풀아웃 하중을 받는 복합재 샌드위치 체결부의 파손거동 연구)

  • Park, Yong-Bin;Yang, Hyeon-Jeong;Kweon, Jin-Hwe;Choi, Jin-Ho;Cho, Hyun-Il
    • Composites Research
    • /
    • v.24 no.1
    • /
    • pp.17-23
    • /
    • 2011
  • The failure of composite sandwich joints was experimentally investigated. A total of 30 joint specimens of 5 different types were tested with various fastening methods and core materials. In the NomexTM core sandwich joints, the core shear buckling was commonly observed in all the specimens which was followed by the slope change of the load-displacement curve. After the shear buckling, however, the joints carried additional loads of 50~200% over the buckling loads and then finally failed in the upper face breakage. The joints of PMI foam core showed the shear failure of the core instead of shear buckling and experienced the sharp drop of the carried load. Considering the failure modes, while both the core and face properties are important in the $Nomex^{TM}$ core joints, core shear strength seems to be the critical factor for the foam core joints.

A Study on the Development and Surface Roughness of Roller Cam SCM415 by 5-Axis Machining (5축 가공에 의한 SCM415 롤러 캠 개발과 표면조도 연구)

  • Kim, Jin Su;Lee, Dong Seop;Kang, Seong Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.4
    • /
    • pp.397-402
    • /
    • 2013
  • In this study, we carried out the each lines of section, using GC (green silicon carbide) whetstone, the SCM415 material which separated by after and before heat treatments process, in 3+2 axis machining centers for integrated grinding after cutting end mill works, the spindle speed 8000 rpm and feed rate 150 mm/min. For the analysis of the centerline average roughness (Ra), we measured by 10 steps stages. Using Finite element analysis, we found the result of the load analysis effect of the assembly parts, when applied the 11 kg's load on both side of the ATC (Automatic tool change) arm. The result is as follows. For the centerline average roughness (Ra) in the non-heat treatment work pieces, are appeared the most favorable in the tenth section are $0.510{\mu}m$, that were shown in the near the straight line section which is the smallest deformation of curve. In addition, the bad surface roughness appears on the path is to long by changing angle, the more inclined depth of cut, because the chip discharging is not smoothly.

Evaluation of Analysis Technique for Piles Driven by Vibration through Parametric Study (매개변수연구를 통한 진동타입말뚝 해석기법 평가)

  • Lee, Seung-Hyun;Lee, Su-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1749-1755
    • /
    • 2014
  • Technique for analyzing a pile installed by vibrohammer was developed and parametric studies were executed in order to evaluate reliability of the developed technique. Comparing the accelerations obtained from parametric studies of varying eccentric moment and frequency, it can be seen that magnitude of maximum acceleration was proportional to the eccentric moment and square of frequency. It can also be seen that amplitude of displacement was roughly proportional to the eccentric moment but has nothing to do with the frequency. It can be said that all of the analysis results reflect characteristics of behavior of a pile in case of free vibration. Comparing the dynamic load transfer curves, maximum dynamic unit toe resistance was constant regardless of the eccentric moment and the frequency and it can be seen that dynamic unit skin friction was affected by the eccentric moment not by frequency. Comparing all of the analysis results, it can be said that the developed technique is reliable.

Analysis of axial compression performance of BFRRAC-filled square steel tubular column

  • Xianggang Zhang;Jixiang Niu;Wenlong Shen;Dapeng Deng;Yajun Huang
    • Steel and Composite Structures
    • /
    • v.49 no.4
    • /
    • pp.457-471
    • /
    • 2023
  • To make up for the performance weaknesses of recycled aggregate concrete (RAC), expand the application range of RAC, and alleviate the environmental problems caused by excessive exploitation of natural coarse aggregates (NCA), this study proposes a basalt fiber-reinforced recycled aggregate concrete (BFRRAC)-filled square steel tubular columns that combines two modification methods of steel tube and fiber, which may greatly enhance the mechanical properties of RAC. The axial compression performance for BFRRAC-filled square steel tubular columns was reported during this study. Seven specimens with different replacement ratios of recycled coarse aggregate (RCA), length-diameter ratios, along with basalt fiber (BF) contents were designed as well as fabricated for performing axial compression test. For each specimen, the whole failure process as well as mode of specimen were discovered, subsequently the load-axial displacement curve has obtained, after which the mechanical properties was explained. A finite element analysis model for specimens under axial compression was then established. Subsequently, based on this model, the factors affecting axial compression performance for BFRRAC-filled square steel tubes were extended and analyzed, after which the corresponding design suggestion was proposed. The results show that in the columns with length-diameter ratios of 5 and 8, bulging failure was presented, and the RAC was severely crushed at the bulging area of the specimen. The replacement ratio of RCA as well as BF content little affected specimen's peak load (less than 5%). As the content of BF enhanced from 0 kg/m3 to 4 kg/m3, the dissipation factor and ductility coefficients increased by 10.2% and 5.6%, respectively, with a wide range.