• Title/Summary/Keyword: load dependence

Search Result 136, Processing Time 0.027 seconds

Performance Enhancement of ECC Algorithm-based Mobile Web Service System (ECC 알고리즘 기반 모바일 웹 서비스 시스템의 성능 향상)

  • Kim, Yong-Tae;Jeong, Yoon-Su;Park, Gil-Cheol
    • The KIPS Transactions:PartD
    • /
    • v.15D no.5
    • /
    • pp.699-704
    • /
    • 2008
  • By the dependence on Web from popularization of internet and increasing number of users, web services capability and security problem of communication is becoming a great issue. Existing web services technology decrease the capability of web application server by limiting the number of synchronous client, decreasing the processing load and increasing average response time. The encryption process to secure communication and the early expense of handshake decrease transmission speed and server capability by increasing the calculation time for connecting. Accordingly, this paper executes an encryption procedure by elliptical encryption algorithm to satisfy secure demands, improve the overload of server for web services and get reliability and security of web server architecture and proposes an improved mobile web sever which provides better ability and the techniques for deferred processing.

Electric Circuits Modeling of Magnetoelectric Bulk Composites in Low Frequency (ME 소자의 저주파 등가회로 모델링)

  • Chung, Su-Tae;Ryu, Ji-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.7
    • /
    • pp.515-521
    • /
    • 2013
  • Magnetoelectric(ME) bulk composites with PZT-PNN-PZN/$Fe_2O_4$ were prepared by using a conventional ceramic methods and investigated on the ME voltage vs frequency of ac magnetic fields. We made the electric equivalent circuits by using the Maxwell-Wagner model and simulated the frequency dependence of ME voltage in low frequency region. ME devices were described by a series of two equivalent circuits of piezoelectric and magnetic, which have the relaxation time ${\tau}$ due to the interaction between ME device and load resistor. Equivalent circuit of piezoelectric material is independent of frequency. However ferrite magnetic materials have Debye absorption and dipolar dispersion, whose equivalent circuit is a function of frequency. Therefore we suggest the resistance in the equivalent circuit is proportion to $1+{\omega}^2{\tau}^2$ and the capacitance is in inverse proportion to $1+{\omega}^2{\tau}^2$ in the magnetic materials.

An Accurate Analysis for Sandwich Steel Beams with Graded Corrugated Core Under Dynamic Impulse

  • Rokaya, Asmita;Kim, Jeongho
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1541-1559
    • /
    • 2018
  • This paper addresses the dynamic loading characteristics of the shock tube onto sandwich steel beams as an efficient and accurate alternative to time consuming and complicated fluid structure interaction using finite element modeling. The corrugated sandwich steel beam consists of top and bottom flat substrates of steel 1018 and corrugated cores of steel 1008. The corrugated core layers are arranged with non-uniform thicknesses thus making sandwich beam graded. This sandwich beam is analogous to a steel beam with web and flanges. Substrates correspond to flanges and cores to web. The stress-strain relations of steel 1018 at high strain rates are measured using the split-Hopkinson pressure. Both carbon steels are assumed to follow bilinear strain hardening and strain rate-dependence. The present finite element modeling procedure with an improved dynamic impulse loading assumption is validated with a set of shock tube experiments, and it provides excellent correlation based on Russell error estimation with the test results. Four corrugated graded steel core arrangements are taken into account for core design parameters in order to maximize mitigation of blast load effects onto the structure. In addition, numerical study of four corrugated steel core placed in a reverse order is done using the validated finite element model. The dynamic behavior of the reversed steel core arrangement is compared with the normal core arrangement for deflections, contact force between support and specimen and plastic energy absorption.

Effect of irradiation temperature on the nanoindentation behavior of P92 steel with thermomechanical treatment

  • Huang, Xi;Shen, Yinzhong;Li, Qingshan;Li, Xiaoyan;Zhan, Zixiong;Li, Guang;Li, Zhenhe
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2408-2417
    • /
    • 2022
  • The nanoindentation behavior of P92 steel with thermomechanical treatment under 3.5 MeV Fe13+ ion irradiation at room temperature, 400 and 700 ℃ was investigated. Pop-in behavior is observed for all the samples with and without irradiation at room temperature, while the temperature dependence of pop-in behavior is only observed in irradiated samples. The average load and penetration depth at the onset of pop-in increase as the irradiation temperature increases, in line with the results of the maximum shear stress. Irradiation induced hardening is exhibited for all irradiated samples, but there is a significant reduction in the hardness of sample irradiated at 700 ℃ in comparison to the samples irradiated at room temperature and 400 ℃. The ratio of hardness to elastic modulus for all samples decreases with increasing penetration depth except for samples at 700 ℃. With the increasing of irradiation temperature, the ratio of the irreversible work to the total work gradually decreases. In contrast, it increases for samples without irradiation.

Temperature-dependent axial mechanical properties of Zircaloy-4 with various hydrogen amounts and hydride orientations

  • Bang, Shinhyo;Kim, Ho-a;Noh, Jae-soo;Kim, Donguk;Keum, Kyunghwan;Lee, Youho
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1579-1587
    • /
    • 2022
  • The effects of hydride amount (20-850 wppm), orientation (circumferential and radial), and temperature (room temperature, 100 ℃, 200 ℃) on the axial mechanical properties of Zircaloy-4 cladding were comprehensively examined. The fraction of radial hydride fraction in the cladding was quantified using PROPHET, an in-house radial hydride fraction analysis code. Uniaxial tensile tests (UTTs) were conducted at various temperatures to obtain the axial mechanical properties. Hydride orientation has a limited effect on the axial mechanical behavior of hydrided Zircaloy-4 cladding. Ultimate tensile stress (UTS) and associated uniform elongation demonstrated limited sensitivity to hydride content under UTT. Statistical uncertainty of UTS was found small, supporting the deterministic approach for the load-failure analysis of hydrided Zircaloy-4 cladding. These properties notably decrease with increasing temperature in the tested range. The dependence of yield strength on hydrogen content differed from temperature to temperature. The ductility-related parameters, such as total elongation, strain energy density (SED), and offset strain decrease with increasing hydride contents. The abrupt loss of ductility in UTT was found at ~700 wppm. Demonstrating a strong correlation between total elongation and offset strain, SED can be used as a comprehensive measure of ductility of hydrided zirconium alloy.

Study on the Reliability Analysis of Wood Floor System Exposed to Fire (화염에 노출된 목재 마루 시스템의 신뢰성 해석에 관한 연구)

  • Kim, Gwang-Chul;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.66-74
    • /
    • 2004
  • Fire performance is the important criterion for evaluating of safety of wood structures which exposed to the standard fire condition. Endurance time and time-to-failure are used as the criteria for fire performance in many countries. Reliability analysis about wood floor system which exposed to fire was carried out as preliminary research for reliability-based design on fire. Analyses were conducted by two methods, numerical analysis method and deterministic method.. They didn't show the difference between two methods. The reliability of floor exposed to fire showed strong dependence on the coefficient of variation of member and did not be influenced by the strength or load of member.

Thermal Strain Measurement of Austin Stainless Steel (SS304) during a Heating-cooling Process

  • Ha, Ngoc San;Le, Vinh Tung;Goo, Nam Seo;Kim, Jae Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.206-214
    • /
    • 2017
  • In this study, measurement of thermophysical properties of materials at high temperatures was performed. This experiment employed a heater device to heat the material to a high temperature. The images of the specimen surface due to thermal load at various temperatures were recorded using charge-coupled device (CCD) cameras. Afterwards, the full-field thermal deformation of the specimen was determined using the digital image correlation (DIC) method. The capability and accuracy of the proposed technique are verified by two experiments: (1) thermal deformation and strain measurement of a stainless steel specimen that was heated to $590^{\circ}C$ and (2) thermal expansion and thermal contraction measurements of specimen in the process of heating and cooling. This research focused on two goals: first, obtaining the temperature dependence of the coefficient of thermal expansion, which can be used as data input for finite element simulation; and second, investigating the capability of the DIC method in measuring full-field thermal deformation and strain. The results of the measured coefficient of thermal expansion were close to the values available in the handbook. The measurement results were in good agreement with finite element method simulation results. The results reveal that DIC is an effective and accurate technique for measuring full-field high-temperature thermal strain in engineering fields such as aerospace engineering.

Implement of High Available Replicate Systems Based on Cloud Computing (클라우드 컴퓨팅 기반의 고가용성 복제시스템의 구현)

  • Park, Sung-Won;Lee, Moon-Goo;Lee, Nam-Yong
    • 전자공학회논문지 IE
    • /
    • v.48 no.4
    • /
    • pp.61-68
    • /
    • 2011
  • As business management has a high level of dependence on Informational Technology (IT), protecting assets of a company from disaster is one of the most important thing that IT operating managers should consider. Because data or information is a major source of operation of the company, data security is the first priority as an aspect of continuity of business management. Therefore, this paper will realize disaster recovery system, which is suspended because of disaster, based on cloud computing system. Realized High Available Replicate System applied a method of multi thread target database to improve Replicate performance, and real time synchronize technology can improve efficiency of network. From Active to Active operation, it maximizes use of backup system, and it has a effect to disperse load of source database system. Also, High Available Replicate System realized consistency verification mechanism and monitoring technique. For Performance evaluation, High Available Replicate System used multi thread method, which shows more than threefold of replicate performance than single thread method.

Combustion Characteristics of a Premixed Burner in a Stirling Engine for a Domestic Cogeneration System (가정용 열병합 스털링 엔진을 위한 예혼합 버너의 연소 특성)

  • Ahn, Joon;Lee, Youn-Sik;Kim, Hyouck-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.211-216
    • /
    • 2012
  • The availability of thermal energy has been widely recognized recently, and the cascade usage of thermal energy from combustion has been encouraged. Within this framework, a 1-kW-class Stirling-engine.based cogeneration system has been proposed as a unit of a distributed energy system. The capacity has been designed to be adequate for domestic usage, which requires high compactness as well as low emissions and noise. To develop a highly efficient system satisfying these requirements, a premixed slot-type short-flame burner has been proposed, and a series of experiments has been performed to understand its combustion characteristics. Flame images have been captured to observe the dependence of the flame mode on the combustion load and air/fuel ratio. The exhaust gas has been sampled and analyzed to study the emission characteristics for each flame mode.

Tier-based Proactive Path Selection Mode for Wireless Mesh Networks

  • Fu-Quan, Zhang;Joe, In-Whee;Park, Yong-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.5
    • /
    • pp.1303-1315
    • /
    • 2012
  • In the draft of the IEEE 802.11s standard, a tree topology is established by the proactive tree-building mode of the Hybrid Wireless Mesh Protocol (HWMP). It is used for cases in which the root station (e.g., gateway) is an end point of the majority of the data connections. In the tree topology, the root or central stations (e.g., parent stations) are connected to the other stations (e.g., leaves) that are one level lower than the central station. Such mesh stations are likely to suffer heavily from contention in bottleneck links when the network has a high traffic load. Moreover, the dependence of the network on such stations is a point of vulnerability. A failure of the central station (e.g., a crash or simply going into sleep mode to save energy) can cripple the whole network in the tree topology. This causes performance degradation for end-to-end transmissions. In a connected mesh topology where the stations having two or more radio links between them are connected in such a way that if a failure subsists in any of the links, the other link could provide the redundancy to the network. We propose a scheme to utilize this characteristic by organizing the network into concentric tiers around the root mesh station. The tier structure facilitates path recovery and congestion control. The resulting mode is referred to as Tier-based Proactive Path Selection Mode (TPPSM). The performance of TPPSM is compared with the proactive tree mode of HWMP. Simulation results show that TPPSM has better performance.