• Title/Summary/Keyword: load Q

Search Result 373, Processing Time 0.029 seconds

Damage assessment of reinforced concrete beams including the load environment

  • Zhu, X.Q.;Law, S.S.;Hao, H.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.6
    • /
    • pp.765-779
    • /
    • 2009
  • Quantitative condition assessment of structures has been traditionally using proof load test leading to an indication of the load-carrying capacity. Alternative approaches using ultrasonic, dynamics etc. are based on the unloaded state of the structure and anomalies may not be fully mobilized in the load resisting path and thus their effects are not fully included in the measured responses. This paper studies the effect of the load carried by a reinforced concrete beam on the assessment result of the crack damage. This assessment can only be performed with an approach based on static measurement. The crack damage is modelled as a crack zone over an area of high tensile stress of the member, and it is represented by a damage function for the simulation study. An existing nonlinear optimization algorithm is adopted. The identified damage extent from a selected high level load and a low load level are compared, and it is concluded that accurate assessment can only be obtained at a load level close to the one that creates the damage.

Analysis of Effective Improvement Depth for Establishing Quality Control Criteria of Rapid Impact Compaction for Public Fill Compaction (Public Fill 다짐 시 급속충격다짐공법의 품질관리기준 수립을 위한 유효개량심도 분석)

  • Kim, Kyu-Sun;Park, Jaeyoung;Kim, Hayoung
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.10
    • /
    • pp.5-18
    • /
    • 2023
  • The construction timeline for earthworks can be significantly reduced by substituting the conventional layer-by-layer compaction using a vibratory roller with single-layer compaction through the rapid impact compaction (RIC) method. Dynamic load compaction is well-suited for coarse-grained soils like sand. However, as the supply of sand, the primary reclamation material, becomes scarcer, the utilization of soil with fines is on the rise. To implement the dynamic load compaction, such as RIC, with reclaimed materials containing fines, it's imperative to determine the effective improvement depth. In this study, we assess the impact of the RIC method on the effective improvement depth for clean sand and public fill with fines, comparing field test results before and after RIC application. Our focus is on the cone resistance (qc) as it pertains to compaction quality control criteria. In conclusion, it becomes evident that standardizing the cone resistance is vital for the quality control of various reclaimed soils with fines. We have evaluated the compaction quality control criteria corresponding to a relative density (Dr) of 70% for clean sand as Qtn,cs = 110. As a result of this analysis, we propose new quality control criteria for qc, taking into account the fines content of reclaimed soils, which can be applied to RIC quality control.

Microwave Transistor Oscillator by Cavity Rexsonator (캐비티 동조에 의한 마이크로파 트란지스터 발진기)

  • 장익수;김병철
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.19 no.5
    • /
    • pp.20-25
    • /
    • 1982
  • A realization method of the microwave oscillator is proposed by the inherently stable transistor with a cavily resonator feedback loop. The real Part of the output impedance of the inherently stable bipolar transistor can be made to be negative at the resonance frequency by the high-Q cavity feedback loop, and the oscillation condition can be obtained with the matching section of the load. In this work the microwave transistor oscillator is realized with a silicon bipolar transistor HXTR 2101 and a reentrani cavity, and characteristic of the output power 10m Watts at 2.33 GHz osc. frequency can be verified experimentally.

  • PDF

Cause and Counterplan of Wheel Climb Derailment at Low Speed on Curves (곡선부 저속주행시 타오르기 탈선의 원인과 대책)

  • Ham, Young-Sam;You, Won-Hee
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1031-1035
    • /
    • 2007
  • When vehicles running, vertical force and lateral force act except load of vehicles to rail and wheel. This force happens by complex motion at running. If mark vertical force by P and lateral force by Q, derailment coefficient displays Q/P, most important indicator pointer of running safety judgment. If Q is grown than P from derailment coefficient, than arrived to derailment because wheel climb or jumps over rail. Wheel climb derailment among kind of derailment is when attack angle is +, wheel and rail strike and flange rides to rail. This derailment occurs much in curved line and occurs in low speed. In this study, occurred when running at low speed on curved line, analyze cause of derailment and presented the countermeasure plan.

  • PDF

A Study on the Characteristics of PMASynRM for Zero Inductance of Q-axis (Q축 제로 인덕턴스를 위한 영구자석 매입형 동기 릴럭턴스 전동기 특성 연구)

  • Seo, Jun;Kim, Young-Hyun;Kim, Hong-Seok;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.894-895
    • /
    • 2015
  • This paper deals with the characteristic analysis & optimum design of Permanent Magnet Assisted Synchronous Reluctance Motor(PMASynRM) for Premium Efficiency Performance. The focus of this paper is characteristic analysis of d and q-axis inductances and torque according to magnetizing quantity of interior permanent magnet for PMASynRM. The d and q-axis current component ratios, load angles of a PMASynRM are investigated quantitatively on the basis of the proposed analysis method and the experimental test. Comparisons are given with output characteristic curves of PMASynRM and those according to the rated wattage in PMASynRM, respectively. And optimum design of PMASynRM is performed by Response Surface Methodology(RSM).

  • PDF

Characteristic Analysis for IPMSM Considering Flux-Linkage Ripple

  • Woo, Dong-Kyun;Kwak, Sang-Yeop;Seo, Jang-Ho;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.592-596
    • /
    • 2010
  • In a multi-layer interior permanent magnet synchronous motor, the d- and q-axis parameters vary nonlinearly according to different load conditions, consequently changing the level of saturation. The flux-linkage of d- and q-axis conveys ripple characteristics resulting from mechanical structure and degree of magnetic saturation. If the calculated flux-linkage is correct, the torque using the Maxwell stress tensor method is the same torque calculated by the flux-linkage. However, discrepancy between results exists. In this paper, the d- and q-axis flux-linkage, in consideration of the ripple characteristic, is calculated. Simulation results are then compared with experimental results.

Performance Enhancement of CSMA/CA MAC Protocol Based on Reinforcement Learning

  • Kim, Tae-Wook;Hwang, Gyung-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • Reinforcement learning is an area of machine learning that studies how an intelligent agent takes actions in a given environment to maximize the cumulative reward. In this paper, we propose a new MAC protocol based on the Q-learning technique of reinforcement learning to improve the performance of the IEEE 802.11 wireless LAN CSMA/CA MAC protocol. Furthermore, the operation of each access point (AP) and station is proposed. The AP adjusts the value of the contention window (CW), which is the range for determining the backoff number of the station, according to the wireless traffic load. The station improves the performance by selecting an optimal backoff number with the lowest packet collision rate and the highest transmission success rate through Q-learning within the CW value transmitted from the AP. The result of the performance evaluation through computer simulations showed that the proposed scheme has a higher throughput than that of the existing CSMA/CA scheme.

Axial Load Capacity Prediction of Single Piles in Clay and Sand Layers Using Nonlinear Load Transfer Curves (비선형 하중전이법에 의한 점토 및 모래층에서 파일의 지지력 예측)

  • Kim, Hyeongjoo;Mission, Joseleo;Song, Youngsun;Ban, Jaehong;Baeg, Pilsoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.5
    • /
    • pp.45-52
    • /
    • 2008
  • The present study has extended OpenSees, which is an open-source software framework DOS program for developing applications to idealize geotechnical and structural problems, for the static analysis of axial load capacity and settlement of single piles in MS Windows environment. The Windows version of OpenSees as improved by this study has enhanced the DOS version from a general purpose software program to a special purpose program for driven and bored pile analysis with additional features of pre-processing and post-processing and a user friendly graphical interface. The method used in the load capacity analysis is the numerical methods based on load transfer functions combined with finite elements. The use of empirical nonlinear T-z and Q-z load transfer curves to model soil-pile interaction in skin friction and end bearing, respectively, has been shown to capture the nonlinear soil-pile response under settlement due to load. Validation studies have shown the static load capacity and settlement predictions implemented in this study are in fair agreement with reference data from the static loading tests.

  • PDF

Generalized State-Space Modeling of Three Phase Self-Excited Induction Generator For Dynamic Characteristics and Analysis

  • Kumar Garlapati Satish;Kishore Avinash
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.4
    • /
    • pp.482-489
    • /
    • 2006
  • This paper presents the generalized dynamic modeling of self-excited induction generator (SEIG) using state-space approach. The proposed dynamic model consists of induction generator; self-excitation capacitance and load model are expressed in stationary d-q reference frame with the actual saturation curve of the machine. An artificial neural network model is implemented to estimate the machine magnetizing inductance based on the knowledge of magnetizing current. The dynamic performance of SEIG is investigated under no load, with the load, perturbation of load, short circuit at stator terminals, and variation of prime mover speed, variation of capacitance value by considering the effect of main and cross-flux saturation. During voltage buildup the variation in magnetizing inductance is taken into consideration. The performance of SEIG system under various conditions as mentioned above is simulated using MATLAB/SIMULINK and the simulation results demonstrates the feasibility of the proposed system.

A Study on Finding of Simplified Multiple Load Flow Solutions and Evaluating of Voltage Stability (간략조류계산법과 전압안정도 평가예 관한 연구)

  • Song, Kil-Young;Kim, Sae-Young
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.556-558
    • /
    • 1995
  • This paper presents a new simplified method for finding the multiple load flow solutions and through their solutions the voltage stability can be evaluated. Line flow($P_{ij}$, $Q_{ij}$) may be formulated with the second-order equations for $V_{i}^{2}$ in polar coordinates or two circle equations for $e_{i}$ and $f_{i}$ in rectangular coordinates. Based on this feature, multiple load flow solutions are calculated with simple works, results of multiple load flow solutions are used for sensitivity analysis of voltage stability. Also, in the case that reactive power sources is considered, method of evaluating the voltage stability is introduced. The proposed method was validated to 2-bus and IEEE 6-bus system.

  • PDF