• 제목/요약/키워드: load Mechanical

검색결과 5,666건 처리시간 0.034초

다양한 하중을 받는 커넥팅 로드의 피로 파손 해석 (The Analysis of Fatigue Damage of Connecting Rod under Various Load)

  • 조재웅;최두석;김기선
    • 한국자동차공학회논문집
    • /
    • 제13권6호
    • /
    • pp.154-162
    • /
    • 2005
  • This study investigates the fatigue life and the damage possibility of connecting rod by the fatigue tool of Ansys workbench. The case of constant fatigue loading variation 'Sine' becomes more stable than that of nonconstant loading but the magnitude of constant load becomes larger than that of nonconstant load. Among nonconstant fatigue loads, the case of 'SAE Bracket History' which is severest at the variation of load tends to be most unstable. The case of 'Sample History2' which becomes a little slow at the variation of load tends to be most stable. The maximum relative damage in case of 'SAE Bracket History' is occurred near the average stress '0' and this case can be shown to have the possibility to take more damage than another case.

차량 배기관용 V-Insert 클램프의 체결 성능 평가 (Characterization of V-Insert Clamp Joint Applied to Automobile Exhaust Pipes)

  • 황영은;윤성호
    • 한국정밀공학회지
    • /
    • 제29권2호
    • /
    • pp.208-213
    • /
    • 2012
  • In this study, the mechanical joint performance of the V-Insert clamp applied to automobile exhaust pipes was evaluated through the experimental investigation of its axial load capacity. The axial load of the V-Insert clamp was also determined by using theoretical equations presented by Shoghi and compared with the experimental results. As results of the theoretical prediction, the axial load of the V-Insert clamp tended to increase along with smaller angle of the V-Insert segment and the lower friction coefficient between the V-Insert segment and exhaust pipes. The experimental results under tightening effects were similar to the theoretical results and the axial load of the V-Insert clamp presented maximum values in the range of all torques at distance of 2mm between each exhaust pipes. The experimental results under loading effects were similar to the theoretical results in the range of lower torques but deviated from the theoretical results in the range of higher torques. These results would be beneficial to improve the joint and sealing performance of the V-Insert clamp.

가혹하중이 작용하는 경우의 굴삭기 연결부의 반력계산 (Evaluation of Joint Reaction Forces for a Hydraulic Excavator Subjected to a Critical Load)

  • 김외조;유완석;윤경화;강하근
    • 대한기계학회논문집A
    • /
    • 제20권4호
    • /
    • pp.1154-1163
    • /
    • 1996
  • This paper presents a three dimensional modeling and dynamic anlaysis of a hydraulic excavator. An excavator is composed of a ground, an under-frame, two idlers, two spockets, an upper-frame, a boom, an arm, a bucket two yokes, two connecting rods, two boom cylinders, an arm cylinder, and a bucket cylinder. Each cylinder is modeled with two separate bodies which are linked to each other by a translational joint. The three dimensioanl model of the excavator consists of 22 bodies and each body is assumed as rigid. This paper suggested the maximum lifting capability, a critical load and reaction forces at joints form the DADS simulation. It was presumed that the reaction forces due to a critical load are three times bigger than those due to the maximum lifting capacity.

Changes in Mechanical Properties of Wood Due to 1 Year Outdoor Exposure

  • KIM, Gwang-Chul;KIM, Jun-Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권1호
    • /
    • pp.12-21
    • /
    • 2020
  • For quantitative evaluation of wooden structures, the mechanical performance of members has undergone outdoor exposure tests. A year-long monitoring was conducted using an SPF species. Test groups were divided into twelve (each month) to measure the moisture content, density and ultimate load. Starting from May when moisture content of the test group was at the lowest, simple failure modes were observed more frequently during the first half of the experiment, whereas complex failure modes took over during the second half. Starting from June when moisture content of the test group was the highest, ultimate load decreased by 30% in the second half compared to the first half. A multiple regression analysis confirmed that moisture content of the test group was the variable with most effect on ultimate load of various outdoor variables, and an estimation equation of a simple regression analysis revealed that moisture content and ultimate load formed an inversely proportionate relationship. It is thought that correlational relationships of variables other than moisture content could be applied with the increase in added data amount by longer periods of outdoor exposure tests.

Nonlinear response of a resonant viscoelastic microbeam under an electrical actuation

  • Zamanian, M.;Khadem, S.E.;Mahmoodi, S.N.
    • Structural Engineering and Mechanics
    • /
    • 제35권4호
    • /
    • pp.387-407
    • /
    • 2010
  • In this paper, using perturbation and Galerkin method, the response of a resonant viscoelastic microbeam to an electric actuation is obtained. The microbeam is under axial load and electrical load. It is assumed that midplane is stretched, when the beam is deflected. The equation of motion is derived using the Newton's second law. The viscoelastic model is taken to be the Kelvin-Voigt model. In the first section, the static deflection is obtained using the Galerkin method. Exact linear symmetric mode shape of a straight beam and its deflection function under constant transverse load are used as admissible functions. So, an analytical expression that describes the static deflection at all points is obtained. Comparing the result with previous research show that using deflection function as admissible function decreases the computation errors and previous calculations volume. In the second section, the response of a microbeam resonator system under primary and secondary resonance excitation has been obtained by analytical multiple scale perturbation method combined with the Galerkin method. It is shown, that a small amount of viscoelastic damping has an important effect and causes to decrease the maximum amplitude of response, and to shift the resonance frequency. Also, it shown, that an increase of the DC voltage, ratio of the air gap to the microbeam thickness, tensile axial load, would increase the effect of viscoelastic damping, and an increase of the compressive axial load would decrease the effect of viscoelastic damping.

크롤러 크레인의 붐 길이 선회각도에 의한 롤러 하중 해석 (Analysis of Roller Load by Boom Length and Rotation Angle of a Crawler Crane)

  • 이득기;강정호;김태현;오철규;김종민;김종명
    • 한국기계가공학회지
    • /
    • 제20권3호
    • /
    • pp.83-91
    • /
    • 2021
  • A crawler crane, which consists of a lattice boom, a driving system, and a movable vehicle, is widely used on construction sites. The crawler crane often traverses rough terrain at these sites; as a result, an overload limiter needs to be installed on the crane to prevent it from overturning and breaking. In this paper, we studied the distributed load change in relation to boom length and the angle of rotation of the roller that comes in direct contact with the grounded track shoe. First, we developed a 3D model of a crawler crane and meshed it for finite elements. Then, we performed finite element analysis to derive the load on the roller. Finally, we graphed and examined the roller distributed load data of the case according to boom length and rotation angle. By detecting the load on the roller of the crawler crane, we can predict the potential for the crane to overturn before it happens.

유한요소해석과 순환신경망을 활용한 하중 예측 (Load Prediction using Finite Element Analysis and Recurrent Neural Network)

  • 강정호
    • 한국산업융합학회 논문집
    • /
    • 제27권1호
    • /
    • pp.151-160
    • /
    • 2024
  • Artificial Neural Networks that enabled Artificial Intelligence are being used in many fields. However, the application to mechanical structures has several problems and research is incomplete. One of the problems is that it is difficult to secure a large amount of data necessary for learning Artificial Neural Networks. In particular, it is important to detect and recognize external forces and forces for safety working and accident prevention of mechanical structures. This study examined the possibility by applying the Current Neural Network of Artificial Neural Networks to detect and recognize the load on the machine. Tens of thousands of data are required for general learning of Recurrent Neural Networks, and to secure large amounts of data, this paper derives load data from ANSYS structural analysis results and applies a stacked auto-encoder technique to secure the amount of data that can be learned. The usefulness of Stacked Auto-Encoder data was examined by comparing Stacked Auto-Encoder data and ANSYS data. In addition, in order to improve the accuracy of detection and recognition of load data with a Recurrent Neural Network, the optimal conditions are proposed by investigating the effects of related functions.

로드 조건에 따른 고체산화물 연료전지 전극 활성화 분석연구 (Study on Characterization of Solid Oxide Fuel Cell Subjected to Load Treatments)

  • 안권성;최훈;차석원
    • 대한기계학회논문집B
    • /
    • 제35권1호
    • /
    • pp.83-92
    • /
    • 2011
  • 고체산화물 연료전지의 전극인 LSM 과 Ni-YSZ 의 미세구조와 형태가 환원 및 로드조건에 영향을 받는다. 초기 전극구조는 평판 형 덩어리 모양을 띈다. 로드 조건을 $0.1A/cm^2$, $0.2A/cm^2$, $0.3A/cm^2$로 각각 3 시간 동안 주고 실험 전, 후로 각각의 셀 성능 및 구조 변화를 관찰했다. 각각의 로드에 따라 그 셀 구조가 다양하게 변화된다. 이런 변형들로 인해 전극의 구조변화가 생기고 그로 인해 삼상계면의 증가된다. 특히 활성면적 증가에 따른 전지의 활성화 손실의 감소가 로드조건에 비례해서 두드러지게 나타난다. 이로 인해 전지의 성능이 향상 되며 전지에 대한 최적의 로드조건이 존재함을 확인할 수 있었다.

복합말뚝 연결부 안정성 평가 및 수평거동특성 분석 (Joint Stability and lateral behavior of composite piles)

  • 신윤섭;박재현;황의성;조성한;정문경;부교탁
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.553-558
    • /
    • 2010
  • The behavior of composite piles composed of steel pipe pile in the upper part and concrete pile in the lower part by a mechanical splicing joint was examined by field lateral load tests and bending tests. A total of 7 piles including two instrumented piles for bending test were installed. The soil profile consists of soft clay with weak silt with shallow groundwater level. Laboratory tests were carried out to determine the basic soil characteristics and the strength parameters. This paper presents the composite pile behavior with various portions of the upper steel pile: 0, 20, 30, and 45% of the pile embedded pile length. Three-point bending tests were performed to investigate the stress-strain relation at the mechanical joint. Based on these test results, the behavior of composite piles with various upper steel pile length are evaluated and the stability of mechanical joints are examined. Through comparisons with results of field load tests, it was found that lateral load carrying capacity of the composite piles increased and deflections of the composite piles decreased with increasing the upper steel piles. The mechanical joint was proved to retain its structural stability against the tested load conditions. Economical benefits of composite pile of this kind can be gained by setting adequately the length of the upper steel pipe piles.

  • PDF

Buckling and vibration analyses of MGSGT double-bonded micro composite sandwich SSDT plates reinforced by CNTs and BNNTs with isotropic foam & flexible transversely orthotropic cores

  • Mohammadimehr, M.;Nejad, E. Shabani;Mehrabi, M.
    • Structural Engineering and Mechanics
    • /
    • 제65권4호
    • /
    • pp.491-504
    • /
    • 2018
  • Because of sandwich structures with low weight and high stiffness have much usage in various industries such as civil and aerospace engineering, in this article, buckling and free vibration analyses of coupled micro composite sandwich plates are investigated based on sinusoidal shear deformation (SSDT) and most general strain gradient theories (MGSGT). It is assumed that the sandwich structure rested on an orthotropic elastic foundation and make of four composite face sheets with temperature-dependent material properties that they reinforced by carbon and boron nitride nanotubes and two flexible transversely orthotropic cores. Mathematical formulation is presented using Hamilton's principle and governing equations of motions are derived based on energy approach and applying variation method for simply supported edges under electro-magneto-thermo-mechanical, axial buckling and pre-stresses loadings. In order to predict the effects of various parameters such as material length scale parameter, length to width ratio, length to thickness ratio, thickness of face sheets to core thickness ratio, nanotubes volume fraction, pre-stress load and orthotropic elastic medium on the natural frequencies and critical buckling load of double-bonded micro composite sandwich plates. It is found that orthotropic elastic medium has a special role on the system stability and increasing Winkler and Pasternak constants lead to enhance the natural frequency and critical buckling load of micro plates, while decrease natural frequency and critical buckling load with increasing temperature changes. Also, it is showed that pre-stresses due to help the axial buckling load causes that delay the buckling phenomenon. Moreover, it is concluded that the sandwich structures with orthotropic cores have high stiffness, but because they are not economical, thus it is necessary the sandwich plates reinforce by carbon or boron nitride nanotubes specially, because these nanotubes have important thermal and mechanical properties in comparison of the other reinforcement.