• Title/Summary/Keyword: liver segmentation

Search Result 43, Processing Time 0.055 seconds

Liver Splitting Using 2 Points for Liver Graft Volumetry (간 이식편의 체적 예측을 위한 2점 이용 간 분리)

  • Seo, Jeong-Joo;Park, Jong-Won
    • The KIPS Transactions:PartB
    • /
    • v.19B no.2
    • /
    • pp.123-126
    • /
    • 2012
  • This paper proposed a method to separate a liver into left and right liver lobes for simple and exact volumetry of the river graft at abdominal MDCT(Multi-Detector Computed Tomography) image before the living donor liver transplantation. A medical team can evaluate an accurate river graft with minimized interaction between the team and a system using this algorithm for ensuring donor's and recipient's safe. On the image of segmented liver, 2 points(PMHV: a point in Middle Hepatic Vein and PPV: a point at the beginning of right branch of Portal Vein) are selected to separate a liver into left and right liver lobes. Middle hepatic vein is automatically segmented using PMHV, and the cutting line is decided on the basis of segmented Middle Hepatic Vein. A liver is separated on connecting the cutting line and PPV. The volume and ratio of the river graft are estimated. The volume estimated using 2 points are compared with a manual volume that diagnostic radiologist processed and estimated and the weight measured during surgery to support proof of exact volume. The mean ${\pm}$ standard deviation of the differences between the actual weights and the estimated volumes was $162.38cm^3{\pm}124.39$ in the case of manual segmentation and $107.69cm^3{\pm}97.24$ in the case of 2 points method. The correlation coefficient between the actual weight and the manually estimated volume is 0.79, and the correlation coefficient between the actual weight and the volume estimated using 2 points is 0.87. After selection the 2 points, the time involved in separation a liver into left and right river lobe and volumetry of them is measured for confirmation that the algorithm can be used on real time during surgery. The mean ${\pm}$ standard deviation of the process time is $57.28sec{\pm}32.81$ per 1 data set ($149.17pages{\pm}55.92$).

Automatic Segmentation of the Liver Region in CT Images Using Slob Coloring (블럽 컬러링을 이용한 CT영상에서 간 영역 자동 추출)

  • 임옥현;김진철;박성미;이배호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.760-762
    • /
    • 2004
  • 본 논문에서 CT영상에서 간 영역을 자동적으로 분할할 수 있는 방법을 제안한다. 밝기의 특성을 이용하여 초기 관심 영역을 추출하기 위해 ATI(Automatic Threshold Intensity)기법을 사용하였다. 간 영역을 최종적으로 추출하기 위해 블럽 컬러링 기법을 사용하였다 기존 블럽 컬러링의 연산속도를 개선하기 위해서 Recoloring table을 이용하였다 제안된 방법을 이용하여 실험한 결과로 간 영역 추출의 성공률 90%를 얻었다.

  • PDF

Recognition of Disease in Medical Image (의료영상의 질환인식)

  • 신승수;이상복;조용환
    • The Journal of the Korea Contents Association
    • /
    • v.1 no.1
    • /
    • pp.8-14
    • /
    • 2001
  • In this paper, we suggests a algorithms of recognizing the disease region by extracting particular organ from medical image. This method can extract liver region in spite of input image including many organs and charged format by using multi-threshold of feed-back-structure for segmentation liver region, and suggest the recognition of disease region in extracted liver, using multi-neural network structured by RBF and BP, overcoming the defect of single-neural network. The algorithm in this paper is proficient in adaptation for a multi form change of input medical image. This algorithm can be used at tole-medicine through automatic recognition after recognizing of the disease region by real-tire medical Image.

  • PDF

Evaluation of Computer-Assisted Quantitative Volumetric Analysis for Pre-Operative Resectability Assessment of Huge Hepatocellular Carcinoma

  • Tang, Jian-Hua;Yan, Fu-Hua;Zhou, Mei-Ling;Xu, Peng-Ju;Zhou, Jian;Fan, Jia
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.3045-3050
    • /
    • 2013
  • Purpose: Hepatic resection is arguably the preferred treatment for huge hepatocellular carcinoma (H-HCC). Estimating the remnant liver volume is therefore essential. This study aimed to evaluate the feasibility of using computer-assisted volumetric analysis for this purpose. Methods: The study involved 40 patients with H-HCC. Laboratory examinations were conducted, and a contrast CT-scan revealed that 30 cases out of the participating 40 had single-lesion tumors. The remaining 10 had less than three satellite tumors. With the consensus of the team, two physicians conducted computer-assisted 3D segmentation of the liver, tumor, and vessels in each case. Volume was automatically computed from each segmented/labeled anatomical field. To estimate the resection volume, virtual lobectomy was applied to the main tumor. A margin greater than 1 cm was applied to the satellite tumors. Resectability was predicted by computing a ratio of functional liver resection (R) as (Vresected-Vtumor)/(Vtotal-Vtumor) x 100%, applying a threshold of 50% and 60% for cirrhotic and non-cirrhotic cases, respectively. This estimation was then compared with surgical findings. Results: Out of the 22 patients who had undergone hepatectomies, only one had an R that exceeded the threshold. Among the remaining 18 patients with non-resectable H-HCC, 12 had Rs that exceeded the specified ratio and the remaining 6 had Rs that were < 50%. Four of the patients who had Rs less than 50% underwent incomplete surgery due to operative findings of more extensive satellite tumors, vascular invasion, or metastasis. The other two cases did not undergo surgery because of the high risk involved in removing the tumor. Overall, the ratio of functional liver resection for estimating resectability correlated well with the other surgical findings. Conclusion: Efficient pre-operative resectability assessment of H-HCC using computer-assisted volumetric analysis is feasible.

A segmentation method of abnormal liver using abdominal CT images (복부 CT 영상을 이용한 비정상 간의 세그멘테이션 기법)

  • Seong, Won;Park, Jong-Won
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.646-648
    • /
    • 2003
  • 일반적으로 복부 CT 영상에서 간암이나 다른 병변들을 갖고 있는 않은 정상 간은 고른 그레이값 분포 범위를 가지고 있다. 그 그레이값 범위는 대개 90 에서 92 사이의 값이다. 그러나. 복부 CT 영상에서 간암이나 여러 병변들을 가지고 있는 비정상간의 경우는 정상간의 경우와 같이 90 에서 92 사이의 일정 간격의 그레이값들만으로 구성되어 있지 않다. 비정상간의 경우는 병변들로 인하여 건강한 간의 실질 부분의 그레이값만을 나타내지는 못하기 때문이다. 이는 복부 CT 영상에서 간 부분을 세그멘테이션할 때 정상간 부분과 비정상간 부분의 세그멘테이션 방식이 다를 수 있음을 말해준다. 보통 기존에 있는 정상간의 세그멘테이션 기법은 위치 정보와 함께 일정 간격의 그레이값 분포 정보를 이용하여 수월하게 간을 세그멘테이션 했다. 그러나, 이 방식은 비정상간을 세그멘테이션하지 못하는 경우가 대부분이다. 본 연구는 간의 위치 정보, 거리 정보를 이용하고 각도선 조절 기법 등을 사용하여 비정상간을 세그멘테이션하였다. 그리하여, 본 연구는 세그멘테이션이 어려운 간암 보유 복부 CT 영상에 적용되어 효과적인 간의 세그멘테이션을 가능하게 하였다.

  • PDF

Segmentation of Liver on MDCT Image (MDCT 영상에서 간의 추출)

  • Seo Jeongjoo;Ryu Gangmin;Fei Yang;Park Jongwon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.802-804
    • /
    • 2005
  • 제안된 연구에서는 기존의 일반 CT(Computerized tomography) 영상이 아닌 MDCT(Multi Detector CT) 영상을 이용하여 장기 추출에 관한 연구를 진행하였다. 조영제를 이용한 복부 MDCT 영상으로부터 모폴로지(morphology) 기법을 통해 간에 근접한 노이즈를 제거하고, 기존의 Otsu threshold를 개선하여 간의 명암값 분포를 구분할 수 있는 임계치를 구하였다. 찾아진 임계치를 이용하여 영상을 이진화하고, 최종적으로 위치정보를 이용하여 간에 해당하는 부분들을 추출하였다. 이러한 방식은 명암값과 위치정보를 이용하여 간을 추출한 후 다시 노이즈 문제를 해결하는 기존의 알고리즘과 비교했을 때, 처리 방식이 단순해지고 속도가 향상되었다. 추출된 간은 간 이식술이나 절제술에 필요한 간 내부의 혈관 인식과 간의 부분체적 계산 연구에 중요한 정보로 사용될 수 있을 것이다.

  • PDF

Comparison of SUV for PET/MRI and PET/CT (인체 각 부위의 PET/MRI와 PET/CT의 SUV 변화)

  • Kim, Jae Il;Jeon, Jae Hwan;Kim, In Soo;Lee, Hong Jae;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.2
    • /
    • pp.10-14
    • /
    • 2013
  • Purpose: Due to developed simultaneous PET/MRI, it has become possible to obtain more anatomical image information better than conventional PET/CT. By the way, in the PET/CT, the linear absorption coefficient is measured by X-ray directly. However in case of PET/MRI, the value is not measured from MRI images directly, but is calculated by dividing as 4 segmentation ${\mu}-map$. Therefore, in this paper, we will evaluate the SUV's difference of attenuation correction PET images from PET/MRI and PET/CT. Materials and Methods: Biograph mCT40 (Siemens, Germany), Biograph mMR were used as a PET/CT, PET/MRI scanner. For a phantom study, we used a solid type $^{68}Ge$ source, and a liquid type $^{18}F$ uniformity phantom. By using VIBE-DIXON sequence of PET/MRI, human anatomical structure was divided into air-lung-fat-soft tissue for attenuation correction coefficient. In case of PET/CT, the hounsfield unit of CT was used. By setting the ROI at five places of each PET phantom images that is corrected attenuation, the maximum SUV was measured, evaluated %diff about PET/CT vs. PET/MRI. In clinical study, the 18 patients who underwent simultaneous PET/CT and PET/MRI was selected and set the ROI at background, lung, liver, brain, muscle, fat, bone from the each attenuation correction PET images, and then evaluated, compared by measuring the maximum SUV. Results: For solid $^{68}Ge$ source, SUV from PET/MRI is measured lower 88.55% compared to PET/CT. In case of liquid $^{18}F$ uniform phantom, SUV of PET/MRI as compared to PET/CT is measured low 70.17%. If the clinical study, the background SUV of PET/MRI is same with PET/CT's and the one of lung was higher 2.51%. However, it is measured lower about 32.50, 40.35, 23.92, 13.92, 5.00% at liver, brain, muscle, fat, femoral head. Conclusion: In the case of a CT image, because there is a linear relationship between 511 keV ${\gamma}-ray$ and linear absorption coefficient of X-ray, it is possible to correct directly the attenuation of 511 keV ${\gamma}-ray$ by creating a ${\mu}$map from the CT image. However, in the case of the MRI, because the MRI signal has no relationship at all with linear absorption coefficient of ${\gamma}-ray$, the anatomical structure of the human body is divided into four segmentations to correct the attenuation of ${\gamma}-rays$. Even a number of protons in a bone is too low to make MRI signal and to localize segmentation of ${\mu}-map$. Therefore, to develope a proper sequence for measuring more accurate attenuation coefficient is indeed necessary in the future PET/MRI.

  • PDF

Artificial Intelligence based Tumor detection System using Computational Pathology

  • Naeem, Tayyaba;Qamar, Shamweel;Park, Peom
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.15 no.2
    • /
    • pp.72-78
    • /
    • 2019
  • Pathology is the motor that drives healthcare to understand diseases. The way pathologists diagnose diseases, which involves manual observation of images under a microscope has been used for the last 150 years, it's time to change. This paper is specifically based on tumor detection using deep learning techniques. Pathologist examine the specimen slides from the specific portion of body (e-g liver, breast, prostate region) and then examine it under the microscope to identify the effected cells among all the normal cells. This process is time consuming and not sufficiently accurate. So, there is a need of a system that can detect tumor automatically in less time. Solution to this problem is computational pathology: an approach to examine tissue data obtained through whole slide imaging using modern image analysis algorithms and to analyze clinically relevant information from these data. Artificial Intelligence models like machine learning and deep learning are used at the molecular levels to generate diagnostic inferences and predictions; and presents this clinically actionable knowledge to pathologist through dynamic and integrated reports. Which enables physicians, laboratory personnel, and other health care system to make the best possible medical decisions. I will discuss the techniques for the automated tumor detection system within the new discipline of computational pathology, which will be useful for the future practice of pathology and, more broadly, medical practice in general.

The Exquisite Automatic Segmentation of Liver and Spleen with Gray Value Portion (명암값 분포를 이용한 자동화된 간과 비장의 정교한 추출)

  • Yu, Seung-Hwa;Seong, Yun-Chang;Jo, Jun-Sik;No, Seung-Mu;Sin, Gyeong-Suk;Park, Jong-Won
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.28 no.1_2
    • /
    • pp.20-32
    • /
    • 2001
  • 각 장기는 고유한 명암값의 범위와 각 명암값에 대한 서로 다른 비율을 지니고 있으므로 제안된 연구에서는 이러한 명암값의 비율을 이용하여 장기의 영역과 노이즈를 구분할 수 있도록 하였다. 장기의 영역을 세 종류의 메쉬영상으로 표현하여 이들의 유니온 영상으로 장기의 전반적인 형태인 템플리트를 생성하였다. 템플리트 방식은 기존의 방식에서 명암값의 범위가 같은 노이즈의 제거가 어려운 단점을 해결하여 장기의 영역만을 분리할 수 있었다. 장기의 위치를 탐색하기 위한 위치탐색과정에서는 장기의 존재여부의 파악과 함께 분리된 장기까지 추적할 수 있도록 하였다. 외곽선 표현을 위해서는 템플리트로 이진영상에서 서브트랙션(subtraction)하는 방법을 사용하여 장기의 말단부위까지 세밀하게 표현하였다. 제안된 연구에서 사용된 오프닝과 클로징 방법으로 기존의 structuring element를 사용하는 방법에 비해 처리속도를 단축시킬 수 있었다. 추출된 장기의 면적을 토대로 체적계산을 시행하였고 동물실험을 통하여 임상 실험치를 제시하였다.

  • PDF

Auto-Segmentation Algorithm For Liver-Vessel From Abdominal MDCT Image Using Morphological Filtering (Morphological Filtering을 이용한 복부 MDCT 영상의 간혈관 자동 추출 알고리즘)

  • Park, Chun-Ja;Ryu, Gang-Min;Park, Jong-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.819-822
    • /
    • 2005
  • 본 연구는 MDCT 영상을 이용하여 인체의 장기인 간을 추출하고 그 간 내부의 혈관을 추출하는 알고리즘을 제안하였다. 간에는 2개의 주요혈관이 있는데 생체 간 이식 수술시 필수적인 간의 절개 비율 및 간 내의 혈관 모습들을 제공하여 의료진에게 수술 전 혈관 형태에 대한 정확히 정보를 파악하도록 함으로써 혈관의 손상을 최대한으로 줄일 수 있도록 하여 수술 성공률을 높이는데 중요한 역할을 할 수 있다. 간을 이식 할 때 기증자와 수혜자가 동시에 생존하기 위해서는 기증자의 간으 크기가 중요하며 둘다 생존하기 위해서는 기증자는 자신의 간의 35% 이상을 남겨야 하며 수혜자 또한 생존을 위해 자신의 간의 40% 이상에 해당하는 간을 이식 받아야 하는데 간 이식에 있어서 절단 부분을 결정하는데 중요한 중간 정맥을 찾아내어 보여 줌으로써 중간 정맥을 중심으로 3가닥의 굵은 혈관과 주변혈관의 손상을 최소화하고 비율을 잘 맞추어 절단 할 수 있도록 수술하는데 도움을 줄 수 있다. 각 혈관은 원형성과 다양한 각도를 갖는 막대형의 형태를 가지고 있다는 특징을 이용해 morphological filtering을 통해 추출한 후 조합하여 재구성을 하여 혈관의 모습으로 생성해 낼 수 있었다.

  • PDF