In our study, by observing and analyzing normal liver in abdominal CT image, we estimated gray value range and generated binary image. In the binary image, we achieved the number of hole which is located between pixels. Depending on the ratio, we processed the input image to 4 kinds of mesh images to remove the noise part that has the different ratio. With the Union image of 4 kinds of mesh images, we generated the template representing general outline of liver and subtracted from the binary image so the we can represent the organ boundary to be minute. With results of proposed method, processing time is reduced compared with existing method and we compared the result image to manual image of medical specialists.
Kang, Sung Ho;You, Sun Kyoung;Lee, Jeong Eun;Ahn, Chi Young
Journal of Biomedical Engineering Research
/
v.41
no.1
/
pp.48-54
/
2020
In this paper, we deal with a liver fibrosis classification problem using ultrasound B-mode images. Commonly representative methods for classifying the stages of liver fibrosis include liver biopsy and diagnosis based on ultrasound images. The overall liver shape and the smoothness and roughness of speckle pattern represented in ultrasound images are used for determining the fibrosis stages. Although the ultrasound image based classification is used frequently as an alternative or complementary method of the invasive biopsy, it also has the limitations that liver fibrosis stage decision depends on the image quality and the doctor's experience. With the rapid development of deep learning algorithms, several studies using deep learning methods have been carried out for automated liver fibrosis classification and showed superior performance of high accuracy. The performance of those deep learning methods depends closely on the amount of datasets. We propose an enhanced U-net architecture to maximize the classification accuracy with limited small amount of image datasets. U-net is well known as a neural network for fast and precise segmentation of medical images. We design it newly for the purpose of classifying liver fibrosis stages. In order to assess the performance of the proposed architecture, numerical experiments are conducted on a total of 118 ultrasound B-mode images acquired from 78 patients with liver fibrosis symptoms of F0~F4 stages. The experimental results support that the performance of the proposed architecture is much better compared to the transfer learning using the pre-trained model of VGGNet.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.38
no.2
/
pp.179-190
/
2001
In this proposed study, observing and analyzing contrast enhanced abdominal CT images, we segmented the liver automatically. We computed the ratio of each gray value from the estimated gray value range. With the average value of mesh image, we distinguished the liver from the noise parts. We divided the region based on immersion simulation. The threshold value is determined from the mesh image which is generated from each gray value portion of the liver and is used in dividing the liver to the noise region. To get the outline of the liver, we generated template image which represents the lump of the liver, and subtracted it from the binary image. With the results we use the proposed algorithm using 8-connectivity instead of the present opening algorithm, to reduce the processing time. We computed the volume from the segmented organ size and presented a clinical demonstration with the animal experiment
Pixel values of contrast enhanced computed tomography (CE-CT) images are randomly changed. Also, the middle liver part has a problem to segregate the liver structure because of similar gray-level values of a pancreas in the abdomen. In this paper, an automatic liver segmentation method using a partial histogram threshold (PHT) algorithm is proposed for overcoming randomness of CE-CT images and removing the pancreas. After histogram transformation, adaptive multi-modal threshold is used to find the range of gray-level values of the liver structure. Also, the PHT algorithm is performed for removing the pancreas. Then, morphological filtering is processed for removing of unnecessary objects and smoothing of the boundary. Four CE-CT slices of eight patients were selected to evaluate the proposed method. As the average of normalized average area of the automatic segmented method II (ASM II) using the PHT and manual segmented method (MSM) are 0.1671 and 0.1711, these two method shows very small differences. Also, the average area error rate between the ASM II and MSM is 6.8339 %. From the results of experiments, the proposed method has similar performance as the MSM by medical Doctor.
This paper proposed a method to separate a liver into left and right liver lobes for simple and exact volumetry of the river graft at abdominal MDCT(Multi-Detector Computed Tomography) image before the living donor liver transplantation. A medical team can evaluate an accurate river graft with minimized interaction between the team and a system using this algorithm for ensuring donor's and recipient's safe. On the image of segmented liver, 2 points(PMHV: a point in Middle Hepatic Vein and PPV: a point at the beginning of right branch of Portal Vein) are selected to separate a liver into left and right liver lobes. Middle hepatic vein is automatically segmented using PMHV, and the cutting line is decided on the basis of segmented Middle Hepatic Vein. A liver is separated on connecting the cutting line and PPV. The volume and ratio of the river graft are estimated. The volume estimated using 2 points are compared with a manual volume that diagnostic radiologist processed and estimated and the weight measured during surgery to support proof of exact volume. The mean ${\pm}$ standard deviation of the differences between the actual weights and the estimated volumes was $162.38cm^3{\pm}124.39$ in the case of manual segmentation and $107.69cm^3{\pm}97.24$ in the case of 2 points method. The correlation coefficient between the actual weight and the manually estimated volume is 0.79, and the correlation coefficient between the actual weight and the volume estimated using 2 points is 0.87. After selection the 2 points, the time involved in separation a liver into left and right river lobe and volumetry of them is measured for confirmation that the algorithm can be used on real time during surgery. The mean ${\pm}$ standard deviation of the process time is $57.28sec{\pm}32.81$ per 1 data set ($149.17pages{\pm}55.92$).
Proceedings of the Korean Information Science Society Conference
/
2004.10b
/
pp.760-762
/
2004
본 논문에서 CT영상에서 간 영역을 자동적으로 분할할 수 있는 방법을 제안한다. 밝기의 특성을 이용하여 초기 관심 영역을 추출하기 위해 ATI(Automatic Threshold Intensity)기법을 사용하였다. 간 영역을 최종적으로 추출하기 위해 블럽 컬러링 기법을 사용하였다 기존 블럽 컬러링의 연산속도를 개선하기 위해서 Recoloring table을 이용하였다 제안된 방법을 이용하여 실험한 결과로 간 영역 추출의 성공률 90%를 얻었다.
In this paper, we suggests a algorithms of recognizing the disease region by extracting particular organ from medical image. This method can extract liver region in spite of input image including many organs and charged format by using multi-threshold of feed-back-structure for segmentation liver region, and suggest the recognition of disease region in extracted liver, using multi-neural network structured by RBF and BP, overcoming the defect of single-neural network. The algorithm in this paper is proficient in adaptation for a multi form change of input medical image. This algorithm can be used at tole-medicine through automatic recognition after recognizing of the disease region by real-tire medical Image.
Purpose: Hepatic resection is arguably the preferred treatment for huge hepatocellular carcinoma (H-HCC). Estimating the remnant liver volume is therefore essential. This study aimed to evaluate the feasibility of using computer-assisted volumetric analysis for this purpose. Methods: The study involved 40 patients with H-HCC. Laboratory examinations were conducted, and a contrast CT-scan revealed that 30 cases out of the participating 40 had single-lesion tumors. The remaining 10 had less than three satellite tumors. With the consensus of the team, two physicians conducted computer-assisted 3D segmentation of the liver, tumor, and vessels in each case. Volume was automatically computed from each segmented/labeled anatomical field. To estimate the resection volume, virtual lobectomy was applied to the main tumor. A margin greater than 1 cm was applied to the satellite tumors. Resectability was predicted by computing a ratio of functional liver resection (R) as (Vresected-Vtumor)/(Vtotal-Vtumor) x 100%, applying a threshold of 50% and 60% for cirrhotic and non-cirrhotic cases, respectively. This estimation was then compared with surgical findings. Results: Out of the 22 patients who had undergone hepatectomies, only one had an R that exceeded the threshold. Among the remaining 18 patients with non-resectable H-HCC, 12 had Rs that exceeded the specified ratio and the remaining 6 had Rs that were < 50%. Four of the patients who had Rs less than 50% underwent incomplete surgery due to operative findings of more extensive satellite tumors, vascular invasion, or metastasis. The other two cases did not undergo surgery because of the high risk involved in removing the tumor. Overall, the ratio of functional liver resection for estimating resectability correlated well with the other surgical findings. Conclusion: Efficient pre-operative resectability assessment of H-HCC using computer-assisted volumetric analysis is feasible.
Proceedings of the Korean Information Science Society Conference
/
2003.10b
/
pp.646-648
/
2003
일반적으로 복부 CT 영상에서 간암이나 다른 병변들을 갖고 있는 않은 정상 간은 고른 그레이값 분포 범위를 가지고 있다. 그 그레이값 범위는 대개 90 에서 92 사이의 값이다. 그러나. 복부 CT 영상에서 간암이나 여러 병변들을 가지고 있는 비정상간의 경우는 정상간의 경우와 같이 90 에서 92 사이의 일정 간격의 그레이값들만으로 구성되어 있지 않다. 비정상간의 경우는 병변들로 인하여 건강한 간의 실질 부분의 그레이값만을 나타내지는 못하기 때문이다. 이는 복부 CT 영상에서 간 부분을 세그멘테이션할 때 정상간 부분과 비정상간 부분의 세그멘테이션 방식이 다를 수 있음을 말해준다. 보통 기존에 있는 정상간의 세그멘테이션 기법은 위치 정보와 함께 일정 간격의 그레이값 분포 정보를 이용하여 수월하게 간을 세그멘테이션 했다. 그러나, 이 방식은 비정상간을 세그멘테이션하지 못하는 경우가 대부분이다. 본 연구는 간의 위치 정보, 거리 정보를 이용하고 각도선 조절 기법 등을 사용하여 비정상간을 세그멘테이션하였다. 그리하여, 본 연구는 세그멘테이션이 어려운 간암 보유 복부 CT 영상에 적용되어 효과적인 간의 세그멘테이션을 가능하게 하였다.
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.802-804
/
2005
제안된 연구에서는 기존의 일반 CT(Computerized tomography) 영상이 아닌 MDCT(Multi Detector CT) 영상을 이용하여 장기 추출에 관한 연구를 진행하였다. 조영제를 이용한 복부 MDCT 영상으로부터 모폴로지(morphology) 기법을 통해 간에 근접한 노이즈를 제거하고, 기존의 Otsu threshold를 개선하여 간의 명암값 분포를 구분할 수 있는 임계치를 구하였다. 찾아진 임계치를 이용하여 영상을 이진화하고, 최종적으로 위치정보를 이용하여 간에 해당하는 부분들을 추출하였다. 이러한 방식은 명암값과 위치정보를 이용하여 간을 추출한 후 다시 노이즈 문제를 해결하는 기존의 알고리즘과 비교했을 때, 처리 방식이 단순해지고 속도가 향상되었다. 추출된 간은 간 이식술이나 절제술에 필요한 간 내부의 혈관 인식과 간의 부분체적 계산 연구에 중요한 정보로 사용될 수 있을 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.