• Title/Summary/Keyword: liver fibrosis

Search Result 375, Processing Time 0.029 seconds

Inhibitory Effect of Saengangeonbitang-gasamchilgn on Liver Fibrosis in Rat (생간건비탕가삼칠근(生肝健脾湯加三七根)이 흰쥐의 간섬유화 억제에 미치는 영향)

  • Lee, Eun;Kim, Young-Chul;Ko, Heung
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.2
    • /
    • pp.500-511
    • /
    • 2008
  • The aim of this study was to investigate the inhibitory effect of Saengangeonbitang-gasamchilgn(SGGBTGSCG) on collagen production in rat hepatic stellate cells(HSC) and on the TAA-induced chronic liver injury model in rats. Methods : 1) HSCs were treated with SGGBTGSCG extract powder(50% EtOH SGGBTGSCG, dw SGGBTGSCG). After the treatment, MTT assay, BrdU assay and procollagen assay were done. In addition, gene expressions of collagen type $1{\alpha}2$, ASMA, TIMP1, and TIMP2, all of which are known to be associated with liver fibrosis, were analyzed by RT-PCR. 2) Liver fibrosis was developed in rats by injection of TAA 3 times a week for 5 weeks. After the SGGBTGSCG-treatment, body weight, liver & spleen weight, liver function test, the complete blood cell count and the change of portal pressure were studied. Results : In MTT assay, SGGBTGSCG significantly decreased the viability of HSCs in a dose-dependent manner. In BrdU assay, SGGBTGSCG significantly inhibited the HSC proliferation in a dose-dependant manner. In procollagen assay, SGGBTGSCG decreased procollagen production by HSC. In the change of rats' liver and spleen weight, TAA+SGGBTGSCG groups showed little difference compared with TAA-only group. In the liver function test, SGGBTGSCG decreased the serum level of ALT, AST, and Alp elevated by TAA. In the complete blood cell count, SGGBTGSCG significantly decreased WBC elevated by TAA and increased RBC and Hct lowered by TAA. In the change of portal pressure, SGGBTGSCG decreased portal pressure elevated by TAA. Conclusions : These results suggest that SGGBTGSCG is beneficial in the treatment of cirrhotic patients as well as for patients with chronic hepatitis.

  • PDF

Antifibrotic Effect of Extracellular Biopolymer from Submerged Mycelial Cultures of Cordyceps militaris on Liver Fibrosis Induced by Bile Duct Ligation and Scission in Rats

  • Nan, Ji-Xing;Park, Eun-Jeon;Yang, Byung-Keun;Song, Chi-Hyun;Ko, Geonil;Sohn, Dong-Hwan
    • Archives of Pharmacal Research
    • /
    • v.24 no.4
    • /
    • pp.327-332
    • /
    • 2001
  • The antifibrotic effects of hot water extract (WEC), intracellular biopolymer (IPC) and extracellular biopolymers (EPC) from mycelial liquid culture of Cordyceps militaris on liver fibrosis were studied. Liver fibrosis was induced by a bile duct ligation and scission (BDL/S) operation, duration of 4 weeks in rats. In BDL/S rats, the levels of aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), total bilirubin in serum and hydroxyproline content in liver were dramatically increased. The WEC or IPC treatment (30mg/kg/day for 4 weeks, p.o.) in BDL/S rats reduced the serum AST, ALT and ALP levels significantly (p<0.01). The EPC treatment (30 mg/kg /day for 4 weeks, p.o.) reduced the serum ALT, AST and ALP levels significantly (p<0.01). Malondialdehyde contents in liver treated with WEC, IPC or EPC were significantly reduced (p <0.05). But Liver hydroxyproline content was decreased only in EPC treated BDL/S rats to 55% that of BDL/S control rats (p < 0.01). The morphological characteristics and expression of alpha smooth muscle like actin in fibrotic liver, which appeared in BDL/S control group were improved in EPC treated fibrotic liver. These results indicate that IPC (30 mg/kg /day for 4 weeks, p.o.) has an antifibrotic effect on fibrotic rats induced by BDL/S.

  • PDF

The protective and antioxidant effect of Solanum lycopersicum extract in liver fibrosis induced rats

  • Oh, Se-Mi;Park, Jun-Ho;Lee, Sang-Hee;Kim, Hee-Seok;Kim, Ki-Young;Andrea, Mattes
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.155.2-156
    • /
    • 2003
  • The adducts of lipid peroxidation and related aldehydic end are mediators of chronic poisoning and affect the development of chronic liver damage leading to fibrosis and cirrhosis. Substances delayed or suppresed lipid peroxidation could have an antioxidant and protective effect in liver disease. In this study, it was attempted to find out above mentioned effect of Solanum lycopersicum investigated in CCl4 induce liver fibrosis model. (omitted)

  • PDF

Effects of TGF-${\beta}1$ Ribbon Antisense on $CCl_4$-induced Liver Fibrosis

  • Doh, Kyung-Oh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • Ribbon-type antisense oligonucleotide to TGF-${\beta}1$ (TGF-${\beta}1$ RiAS) was designed and tested to prevent or resolve the fibrotic changes induced by $CCl_4$ injection. When Hepa1c1c7 cells were transfected with TGF-${\beta}1$ RiAS, the level of TGF-${\beta}1$ mRNA was effectively reduced. TGF-${\beta}1$ RiAS, mismatched RiAS, and normal saline were each injected to mice via tail veins. When examined for the biochemical effects on the liver, TGF-${\beta}1$ mRNA levels were significantly reduced only in the TGF-${\beta}1$ RiAS-treated group. The results of immunohistochemical studies showed that TGF-${\beta}1$ RiAS prevented the accumulation of collagen and ${\alpha}$-smooth muscle actin, but could not resolve established fibrosis. These results indicate that ribbon antisense to TGF-${\beta}1$ with efficient uptake can effectively prevent fibrosis of the liver.

Ginsenosides: potential therapeutic source for fibrosis-associated human diseases

  • Li, Xiaobing;Mo, Nan;Li, Zhenzhen
    • Journal of Ginseng Research
    • /
    • v.44 no.3
    • /
    • pp.386-398
    • /
    • 2020
  • Tissue fibrosis is an eventual pathologic change of numerous chronic illnesses, which is characterized by resident fibroblasts differentiation into myofibroblasts during inflammation, coupled with excessive extracellular matrix deposition in tissues, ultimately leading to failure of normal organ function. Now, there are many mechanistic insights into the pathogenesis of tissue fibrosis, which facilitate the discovery of effective antifibrotic drugs. Moreover, many chronic diseases remain a significant clinical unmet need. For the past five years, many research works have undoubtedly addressed the functional dependency of ginsenosides in different types of fibrosis and the successful remission in various animal models treated with ginsenosides. Caveolin-1, interleukin, thrombospondin-1 (TSP-1), liver X receptors (LXRs), Nrf2, microRNA-27b, PPARδ-STAT3, liver kinase B1 (LKB1)-AMPK, and TGF-β1/Smads are potential therapy targeting using ginsenosides. Ginsenosides can play a targeting role and suppress chronic inflammatory response, collagen deposition, and epitheliale-mesenchymal transition (EMT), as well as myofibroblast activation to attenuate fibrosis. In this report, our aim was to focus on the therapeutic prospects of ginsenosides in fibrosis-related human diseases making use of results acquired from various animal models. These findings should provide important therapeutic clues and strategies for the exploration of new drugs for fibrosis treatment.

Increased Expression of TGF-β1 in Correlation with Liver Fibrosis during Echinococcus granulosus Infection in Mice

  • Liu, Yumei;Abudounnasier, Gulizhaer;Zhang, Taochun;Liu, Xuelei;Wang, Qian;Yan, Yi;Ding, Jianbing;Wen, Hao;Yimiti, Delixiati;Ma, Xiumin
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.4
    • /
    • pp.519-525
    • /
    • 2016
  • To investigate the potential role of transforming growth factor (TGF)-${\beta}1$ in liver fibrosis during Echinococcus granulosus infection, 96 BALB/c mice were randomly divided into 2 groups, experimental group infected by intraperitoneal injection with a metacestode suspension and control group given sterile physiological saline. The liver and blood samples were collected at days 2, 8, 30, 90, 180, and 270 post infection (PI), and the expression of TGF-${\beta}1$ mRNA and protein was determined by real-time quantitative RT-PCR and ELISA, respectively. We also evaluated the pathological changes in the liver during the infection using hematoxylin and eosin (H-E) and Masson staining of the liver sections. Pathological analysis of H-E stained infected liver sections revealed liver cell edema, bile duct proliferation, and structural damages of the liver as evidenced by not clearly visible lobular architecture of the infected liver, degeneration of liver cell vacuoles, and infiltration of lymphocytes at late stages of infection. The liver tissue sections from control mice remained normal. Masson staining showed worsening of liver fibrosis at the end stages of the infection. The levels of TGF-${\beta}1$ did not show significant changes at the early stages of infection, but there were significant increases in the levels of TGF-${\beta}1$ at the middle and late stages of infection (P<0.05). RT-PCR results showed that, when compared with the control group, TGF-${\beta}1$ mRNA was low and comparable with that in control mice at the early stages of infection, and that it was significantly increased at day 30 PI and remained at high levels until day 270 PI (P<0.05). The results of this study suggested that increased expression of TGF-${\beta}1$ during E. granulosus infection may play a significant role in liver fibrosis associated with E. granulosus infection.

Role of Stem Cell Factor on the Recruitment of Mast Cells in the Development of Liver Fibrosis Induced by Bile Duct Ligation in the Rat (담관 결찰에 의한 간섬유증 발생에서 비만세포 동원에 미치는 Stem Cell Factor의 역할)

  • Jekal, Seung Joo;Ramm, Grant A.
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.36 no.2
    • /
    • pp.163-172
    • /
    • 2004
  • Mast cells (MCs) have been implicated in the pathogenesis of tissue fibrosis. However, the role of MC in the development of liver fibrosis has not been fully elucidated. Stem cell factor (SCF) is known to recruit MCs to the liver following injury as it induces mast cell proliferation, survival and differentiation from resident tissue precursors. This study examines the interaction between activated hepatic stellate cells (HSCs) and MCs in rat fibrotic liver, and SCF production by HSCs during culture in vitro. Rats were studied 4, 7, 14 and 21 days after bile duct ligation (BDL). Fibrogenesis was assessed by a measurement of collagen stained with sirius red F3B. Activated HSCs and MCs were identified by ${\alpha}$-smooth muscle actin (${\alpha}-SMA$) immunohistochemical and alcian blue staining and measured by a computerized image analysis system. SCF production was determined in rat HSC cultures using Western blotting. Mild fibrotic changes were noted in BDL rat livers as early as 4 days after induction of cholestasis. Significant expansion and organization of fibrous tissue has occurred in day 14 BDL rats which progressed to bridging fibrosis by day 21. In BDL rats, both a large number of activated HSCs and MCs were detected in portal tracts and fibrous septa. Both area of activated HSCs infiltration and density of MCs were significantly higher in all BDL group compared with Shams. In BDL rats, both areas of activated HSCs infiltration and density of MCs were no significant difference between day 4 and 7 and were significantly higher in day 14. However, the areas of activated HSCs infiltration were significantly lesser in day 21 and the densities of MCs were significantly higher in day 21 compared with day14 BDL. In BDL rats, both areas of activated HSCs infiltration and density of MCs were highly correlated with areas of fibrosis. Western blotting showed that SCF protein was consistently produced in activated HSCs by culture on plastic and freshly isolated HSCs expressed relatively little 30kD SCF compared to late primary culture activated HSCs (day 14) and passaged HSCs. These results suggest that HSCs activated in vitro produce SCF, and may play an important role in recruiting mast cells to the liver during injury and fibrosis.

  • PDF

Peroxisome Proliferator-Activated Receptor Gamma Agonist Attenuates Liver Fibrosis by Several Fibrogenic Pathways in an Animal Model of Cholestatic Fibrosis

  • Alatas, Fatima Safira;Matsuura, Toshiharu;Pudjiadi, Antonius Hocky;Wijaya, Stephanie;Taguchi, Tomoaki
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.23 no.4
    • /
    • pp.346-355
    • /
    • 2020
  • Purpose: Peroxisome proliferator-activated receptor gamma (PPAR-γ) has a key role in hepatic fibrogenesis by virtue of its effect on the hepatic stellate cells (HSCs). Although many studies have shown that PPAR-γ agonists inhibit liver fibrosis, the mechanism remains largely unclear, especially regarding the cross-talk between PPAR-γ and other potent fibrogenic factors. Methods: This experimental study involved 25 male Wistar rats. Twenty rats were subjected to bile duct ligation (BDL) to induce liver fibrosis, further divided into an untreated group (BDL; n=10) and a group treated with the PPAR-γ agonist thiazolidinedione (TZD), at 14 days post-operation (BDL+TZD; n=10). The remaining 5 rats had a sham operation (sham; n=5). The effect of PPAR-γ agonist on liver fibrosis was evaluated by histopathology, protein immunohistochemistry, and mRNA expression quantitative polymerase chain reaction. Results: Histology and immunostaining showed markedly reduced collagen deposition, bile duct proliferation, and HSCs in the BDL+TZD group compared to those in the BDL group (p<0.001). Similarly, significantly lower mRNA expression of collagen α-1(I), matrix metalloproteinase-2, platelet-derived growth factor (PDGF)-B chain, and connective tissue growth factor (CTGF) were evident in the BDL+TZD group compared to those in the BDL group (p=0.0002, p<0.035, p<0.0001, and p=0.0123 respectively). Moreover, expression of the transforming growth factor beta1 (TGF-β1) was also downregulated in the BDL+TZD group (p=0.0087). Conclusion: The PPAR-γ agonist inhibits HSC activation in vivo and attenuates liver fibrosis through several fibrogenic pathways. Potent fibrogenic factors such as PDGF, CTGF, and TGF-β1 were downregulated by the PPAR-γ agonist. Targeting PPAR-γ activity may be a potential strategy to control liver fibrosis.

The Antifibrotic Effects of D-penicillamine in Liver Fibrosis Animal (간섬유화 동물에서 D-페니실라민의 항섬유화 효과 검색)

  • Kim, Gi-Yeong;Yun, Gi-Jung;Mun, Hyeong-Bae
    • YAKHAK HOEJI
    • /
    • v.40 no.5
    • /
    • pp.550-557
    • /
    • 1996
  • One of therapeutics in liver disease (morbus wilson) is D-penicillamin (D-pen: D-3-mercapto-valin). Especially the cross-linking of collagen molecules could be inhibited by D-pe n in extracellular space. In this study we investigated the antifibrotic effects of D-pen in rats that were induced the liver fibrosis by bile duct ligation and scission (BDL/S). Rats were treated for 4 weeks with D-pen after BDL/S operation or sham operation. The balance between fibrogenesis-marker (PNIIIP) and the fibrolysis-maker (PNIVP) were observed in sera by RIA (radioimmunoassay), and the parameter of collagen deposition in liver tissue (hydroxyproline: HYP) was measured by colorimetry. The weight of liver in BDL/S operated group was increased significantly in compared with sham operation group (15.2g${\pm}$1.1, vs 11.9g${\pm}$3.9: p<0.005, p<0.05). The rats group treated by D-pen showed the lower level of PNIIIP (6.7ng/ml${\pm}$1.5, vs 9.5ng/ml${\pm}$2.8) and the higher value of PIVCP (14.0ng/ml${\pm}$1.9, vs 7.9ng/ml${\pm}$1.5) in sera that compared to untreated rats. The content of HYP was decreased by 141% in BDL/S with D-pen treated group than that of it in BDL/S group. No correlation was revealed between collagen parameters in sera and HYP in liver tissue of BDL/S operated and D-pen treated rats. The group treated with D-pen showed the lower value of clinical biochemistry parameters (GOT: glutamate oxalacetate transaminase, Total-Bilirubin) in compared with only BDL/S operated rats, but the value of GPT (glutamate pyruvate transaminase) and Alkaline phosphatase in two BDL/S groups was nearly same. In the histological finding, we observed mild bile duct proliferation, weak inflammation and fibrosis in BDL/S with D-pen treated group, but BDL/S operated group showed the formation of septum (island of hepatocytes), massive bile duct proliferation. This result represents that the BDL/S operation induces liver fibrosis (cirrhosis) in 4 weeks, and D-pen inhibits the synthesis of collagen weakly and stimulates the degradation of collagen in the extracellular space. We conclude that the monitoring of PNIIIP, PIVCP in sera is useful parameter for screening of antifibrotic effect, and D-pen delay the liver fibrosis.

  • PDF

Function of gaseous hydrogen sulfide in liver fibrosis

  • Lee, Jae-Ho;Im, Seung-Soon
    • BMB Reports
    • /
    • v.55 no.10
    • /
    • pp.481-487
    • /
    • 2022
  • Over the past few years, hydrogen sulfide (H2S) has been shown to exert several biological functions in mammalian. The endogenous production of H2S is mainly mediated by cystathione β-synthase, cystathione γ-lyase and 3-mercaptopyruvate sulfur transferase. These enzymes are broadly expressed in liver tissue and regulates liver function by working on a variety of molecular targets. As an important regulator of liver function, H2S is critically involved in the pathogenesis of various liver diseases, such as non-alcoholic steatohepatitis and liver cancer. Targeting H2S-generating enzymes may be a therapeutic strategy for controlling liver diseases. This review described the function of H2S in liver disease and summarized recent characterized role of H2S in several cellular process of the liver.