• 제목/요약/키워드: liver cells

검색결과 1,988건 처리시간 0.035초

Genetic heterogeneity of liver cancer stem cells

  • Minjeong Kim;Kwang-Woo Jo;Hyojin Kim;Myoung-Eun Han;Sae-Ock Oh
    • Anatomy and Cell Biology
    • /
    • 제56권1호
    • /
    • pp.94-108
    • /
    • 2023
  • Cancer cell heterogeneity is a serious problem in the control of tumor progression because it can cause chemoresistance and metastasis. Heterogeneity can be generated by various mechanisms, including genetic evolution of cancer cells, cancer stem cells (CSCs), and niche heterogeneity. Because the genetic heterogeneity of CSCs has been poorly characterized, the genetic mutation status of CSCs was examined using Exome-Seq and RNA-Seq data of liver cancer. Here we show that different surface markers for liver cancer stem cells (LCSCs) showed a unique propensity for genetic mutations. Cluster of differentiation 133 (CD133)-positive cells showed frequent mutations in the IRF2, BAP1, and ERBB3 genes. However, leucine-rich repeat-containing G protein-coupled receptor 5-positive cells showed frequent mutations in the CTNNB1, RELN, and ROBO1 genes. In addition, some genetic mutations were frequently observed irrespective of the surface markers for LCSCs. BAP1 mutations was frequently observed in CD133-, CD24-, CD13-, CD90-, epithelial cell adhesion molecule-, or keratin 19-positive LCSCs. ASXL2, ERBB3, IRF2, TLX3, CPS1, and NFATC2 mutations were observed in more than three types of LCSCs, suggesting that common mechanisms for the development of these LCSCs. The present study provides genetic heterogeneity depending on the surface markers for LCSCs. The genetic heterogeneity of LCSCs should be considered in the development of LCSC-targeting therapeutics.

고지방식이를 급여한 마우스의 간과 HepG2 세포에서 TJGB의 효과에 대한 연구 (Effect of TJGB on the liver of high-fat diet-fed mice and the viability of HepG2 cells)

  • 김희영;박예진;안효진
    • 대한융합한의학회지
    • /
    • 제5권1호
    • /
    • pp.55-60
    • /
    • 2023
  • Objectives: This study was performed to investigate the effect of TJGB on the liver of high-fat diet (HFD)-fed mice and the cell viability of HepG2 cells. Methods: After a week adaptation, 8-week-old C57BL/6N mice were fed with a 45% HFD or normal diet for 3 weeks. For the next 9 weeks, the mice were divided into 6 groups: normal diet group; HFD group; HFD plus orlistat group; HFD plus Ephedra sinica Stapf (ES) group; HFD plus low dose of TJGB group; HFD plus high dose of TJGB group. To estimate the effect of TJGB in the liver of HFD-fed mice, the protein expressions of phospho-acetyl-CoA carboxylase (p-ACC) and liver X Receptor (LXR) were determined by Western blot assay. The cell viability of ES and TJG was also evaluated in HepG2 cells. Results: The administration of TJGB had little effect on the protein expressions of p-ACC and LXR in the liver of HFD-fed mice. And the cytotoxicity was showed above 7.8 ㎍/mL in HepG2 cells. Conclusion: Further research is needed to evaluate the mechanism of TJGB on hepatic steatosis and cytotoxicity in HepG2 cells.

  • PDF

Blockade of Retinol Metabolism Protects T Cell-Induced Hepatitis by Increasing Migration of Regulatory T Cells

  • Lee, Young-Sun;Yi, Hyon-Seung;Suh, Yang-Gun;Byun, Jin-Seok;Eun, Hyuk Soo;Kim, So Yeon;Seo, Wonhyo;Jeong, Jong-Min;Choi, Won-Mook;Kim, Myung-Ho;Kim, Ji Hoon;Park, Keun-Gyu;Jeong, Won-Il
    • Molecules and Cells
    • /
    • 제38권11호
    • /
    • pp.998-1006
    • /
    • 2015
  • Retinols are metabolized into retinoic acids by alcohol dehydrogenase (ADH) and retinaldehyde dehydrogenase (Raldh). However, their roles have yet to be clarified in hepatitis despite enriched retinols in hepatic stellate cells (HSCs). Therefore, we investigated the effects of retinols on Concanavalin A (Con A)-mediated hepatitis. Con A was injected into wild type (WT), Raldh1 knockout ($Raldh1^{-/-}$), $CCL2^{-/-}$ and $CCR2^{-/-}$ mice. For migration study of regulatory T cells (Tregs), we used in vivo and ex vivo adoptive transfer systems. Blockade of retinol metabolism in mice given 4-methylpyrazole, an inhibitor of ADH, and ablated Raldh1 gene manifested increased migration of Tregs, eventually protected against Con A-mediated hepatitis by decreasing interferon-${\gamma}$ in T cells. Moreover, interferon-${\gamma}$ treatment increased the expression of ADH3 and Raldh1, but it suppressed that of CCL2 and IL-6 in HSCs. However, the expression of CCL2 and IL-6 was inversely increased upon the pharmacologic or genetic ablation of ADH3 and Raldh1 in HSCs. Indeed, IL-6 treatment increased CCR2 expression of Tregs. In migration assay, ablated CCR2 in Tregs showed reduced migration to HSCs. In adoptive transfer of Tregs in vivo and ex vivo, Raldh1-deficient mice showed more increased migration of Tregs than WT mice. Furthermore, inhibited retinol metabolism increased survival rate (75%) compared with that of the controls (25%) in Con A-induced hepatitis. These results suggest that blockade of retinol metabolism protects against acute liver injury by increased Treg migration, and it may represent a novel therapeutic strategy to control T cell-mediated acute hepatitis.

Role of Kupffer Cells in Cold/warm Ischemia-Reperfusion Injury or Rat Liver

  • Lee, Young-Goo;Lee, Sang-Ho;Lee, Sun-Mee
    • Archives of Pharmacal Research
    • /
    • 제23권6호
    • /
    • pp.620-625
    • /
    • 2000
  • The mechanisms of liver injury from cold storage and reperfusion are not completely under-stood. The aim of the present study was to investigate whether the inactivation of Kupffer cells (KCs) by gadolinium chloride ($GdCl_3$) modulates ischemia-reperfusion injury in the rat liver. Hepatic function was assessed using an isolated perfused rat liver model. In livers subjected to cold storage at $4^{\circ}C$ in University of Wisconsin solution for 24 hrs and to 20 min rewarm-ing ischemia, oxygen uptake was markedly decreased, Kupffer cell phagocytosis was stimulated, releases of purine nucleoside phosphorylase and lactate dehydrogenase were increased as compared with control livers. Pretreatment of rats with $GdCl_3$) , a selective KC toxicant, suppressed kupffer cell activity, and reduced the grade of hepatic injury induced by ischemia-reperfusion. While the initial mixed function oxidation of 7-ethoxycoumarin was not different from that found in the control livers, the subsequent conjugation of its meta-bolite to sulfate and glucuronide esters was suppressed by ischemia-reperfusion, CdCl$_3$restored sulfation and glucuronidation capacities to the level of the control liver. Our findings suggest that Kupffer cells could play an important role in cold/warm ischemia-reperfusion hepatic injury.

  • PDF

Identification of MFGE8 in mesenchymal stem cell secretome as an anti-fibrotic factor in liver fibrosis

  • Jang, Yu Jin;An, Su Yeon;Kim, Jong-Hoon
    • BMB Reports
    • /
    • 제50권2호
    • /
    • pp.58-59
    • /
    • 2017
  • The beneficial paracrine roles of mesenchymal stem cells (MSCs) in tissue repair have potential in therapeutic strategies against various diseases. However, the key therapeutic factors secreted from MSCs and their exact molecular mechanisms of action remain unclear. In this study, the cell-free secretome of umbilical cord-derived MSCs showed significant anti-fibrotic activity in the mouse models of liver fibrosis. The involved action mechanism was the regulation of hepatic stellate cell activation by direct inhibition of the $TGF{\beta}$/Smad-signaling. Antagonizing the milk fat globule-EGF factor 8 (MFGE8) activity blocked the anti-fibrotic effects of the MSC secretome in vitro and in vivo. Moreover, MFGE8 was secreted by MSCs from the umbilical cord as well as other tissues, including teeth and bone marrow. Administration of recombinant MFGE8 protein alone had a significant anti-fibrotic effect in two different models of liver fibrosis. Additionally, MFGE8 downregulated $TGF{\beta}$ type I receptor expression by binding to ${\alpha}v{\beta}3$ integrin on HSCs. These findings revealed the potential role of MFGE8 in modulating $TGF{\beta}$-signaling. Thus, MFGE8 could serve as a novel therapeutic agent for liver fibrosis.

Anti-Fibrotic Effects of DL-Glyceraldehyde in Hepatic Stellate Cells via Activation of ERK-JNK-Caspase-3 Signaling Axis

  • Md. Samsuzzaman;Sun Yeou Kim
    • Biomolecules & Therapeutics
    • /
    • 제31권4호
    • /
    • pp.425-433
    • /
    • 2023
  • During liver injury, hepatic stellate cells can differentiate into myofibroblast-like structures, which are more susceptible to proliferation, migration, and extracellular matrix generation, leading to liver fibrosis. Anaerobic glycolysis is associated with activated stellate cells and glyceraldehyde (GA) is an inhibitor of glucose metabolism. Therefore, this study aimed to investigate the anti-fibrotic effects of GA in human stellate LX-2 cells. In this study, we used cell viability, morphological analysis, fluorescence-activated cell sorting (FACS), western blotting, and qRT-PCR techniques to elucidate the molecular mechanism underlying the anti-fibrotic effects of GA in LX-2 cells. The results showed that GA significantly reduced cell density and inhibited cell proliferation and lactate levels in LX-2 cells but not in Hep-G2 cells. We found that GA prominently increased the activation of caspase-3/9 for apoptosis induction, and a pan-caspase inhibitor, Z-VAD-fmk, attenuated the cell death and apoptosis effects of GA, suggesting caspase-dependent cell death. Moreover, GA strongly elevated reactive oxygen species (ROS) production and notably increased the phosphorylation of ERK and JNK. Interestingly, it dramatically reduced α-SMA and collagen type I protein and mRNA expression levels in LX-2 cells. Thus, inhibition of ERK and JNK activation significantly rescued GA-induced cell growth suppression and apoptosis in LX-2 cells. Collectively, the current study provides important information demonstrating the anti-fibrotic effects of GA, a glycolytic metabolite, and demonstrates the therapeutic potency of metabolic factors in liver fibrosis.

저수온기 양식 조피볼락, Sebastes schlegeli 간에 대한 조직병리학적 연구 (Histopathological observation of liver in cultured black rock fish Sebastes schlegeli in low temperature season)

  • 최혜승;허민도;이무근;최희정;박명애
    • 한국어병학회지
    • /
    • 제24권3호
    • /
    • pp.225-236
    • /
    • 2011
  • 본 연구에서는 조피볼락의 간의 육안적 색조에 따른 병리조직학적 소견 및 혈액학적 소견에 근거하여 건강상태를 확인하였다. 조피볼락 총 47개체 모두 외부 소견에서는 특기할 이상 소견이 없었으나, 간은 육안적으로 정상간 (42.55%), 황간 (25.53%), 갈변 위축간 (25.53%), 녹간 (4.26%) 및 지방간 (2.13%) 순으로 나타났다. 간의 육안적 소견에 따른 조피볼락의 간의 조직 소견 관찰시, 정상 간 개체는 HE 염색 시 간세포가 밝게 염색되며, 소엽구조가 불명확하게 관찰되었으나, 황간 개체는 황갈색의 과립이 간세포 및 MMC 내에 관찰되었으며, 간세포는 정상 간 개체에 비해 크기가 위축되어 세포질이 짙은 호산성으로 관찰되며, 세포질 내에 핵과 유사한 크기의 황갈색 초자적이 한 개 이상 관찰되었다. 한편, 녹간 개체는 정상 간 개체에 비해 간세포 크기가 위축으로 관찰되며, HE 염색 시 황갈색과 녹색의 초자적이 간세포 및 MMC 내에 관찰되었으며, 담즙색소 동정을 위한 Stein 염색에서 간세포질 내에서 담즙색소로 추정되는 녹색의 초자적이 관찰되었다. 갈변 위축 간 개체는 간세포의 용적이 줄어들어, 중심정맥 및 동양 모세혈관의 이완이 확인되었다. 그리고 갈변 위축 간이 육안적으로 갈색으로 관찰되나 광학현미경적 관찰결과 간세포질 내에 색소과립은 관찰되지 않았으며, 간세포의 경계가 명확하게 나타나지 않았다. 지방간 개체는 지방 소적의 축적으로 간세포에 다양한 크기의 둥근 지방 공포가 광범위하게 관찰되었으며, 지방소적으로 인해서 팽창된 간세포가 관찰되거나, 간세포핵의 변성이 관찰되었다. 본 연구 결과, 간의 육안적 관찰 및 조직학적 관찰 결과가 어체의 임상 질병으로 실질적인 발현을 진행하기 전에 중요한 건강 매개변수로 사용될 수 있을 것으로 판단되었다.

와송의 수종 암세포에 대한 항암작용 연구 (Anti-cancer Effects of Orostachyos Herba on some Kinds of Cancer Cells)

  • 윤상협;류봉하;류기원;김진성
    • 대한한방내과학회지
    • /
    • 제26권2호
    • /
    • pp.333-340
    • /
    • 2005
  • Background: Cancer reseach is done in earnest world-wide, because cancer is one of most threatening diseases to humans. Orostachyos Herba is a widely used herb that has long been in use in Korea as an anti-inflammatory and anti-cancer therapy. The purpose of this study is to verify any anti-cancer effects on stomach and liver cancer in vitro. Materials & Methods: AGS and KATO III stomach cancer cells and Hep3B and HepG2 liver cancer cells, all obtained from Korean Cell Line Bank, were used. The boiled extract of Orostachyos Herba(20 and 40 microliters) were injected into cultures and observed at 0 hours, and at 24-hour intervals up to 96 hours. The destruction of stomach and liver cancer cells was measured through Trypan blue exclusion testing. The suppression on viability of stomach and liver cancer cells was observed, and anti-cancer mechanisms was examined by analyzing the cell cycle. Results: In morphologic change, AGS, KATO III, HepG2 and Hep3B showed some of the withdrawn and floating appearance that is typical in cellular imparment. AGS, KATO III, HepG2 and Hep3B showed more destruction of stomach cancer cells in each test group than in the control group to a statistically significant degree. Analysis of the cell cycle after introduction of Orostachyos Herba showed very little inhibition of divisions of all cell lines. Conclusions: This experiment suggests that Orostachyos Herba has some anti-tumor effects on stomach and liver cancer cells. Progressive research on Orostachyos Herba and it's anti-tumor effects will be needed to determine its practicability as a cancer treatment.

  • PDF

Correlations of Tumor-associated Macrophage Subtypes with Liver Metastases of Colorectal Cancer

  • Cui, Yun-Long;Li, Hui-Kai;Zhou, Hong-Yuan;Zhang, Ti;Li, Qiang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권2호
    • /
    • pp.1003-1007
    • /
    • 2013
  • Objective: This work aimed to investigate the correlations of tumor-associated macrophages (TAMs) and their subtypes M1 and M2 with liver metastasis of colorectal cancer, and provide useful references for seeking predictors of liver metastasis and studying mechanisms. Methods: 120 patients with colorectal cancer from 2000 to 2009 were divided into low, middle and high liver metastasis groups (group A, B and C, respectively). S-P immunohistochemical staining and microscopic observation were conducted to compare expression in CD68-positive cells (TAMs), CD80-positive cells (M1) and CD163-positive cells (M2) in three groups. Correlations of TAMs, M1, M2, and M2/M1 ratio with clinical and pathological parameters were analyzed. Results: With increase of liver metastatic ability, the number of TAMs decreased gradually, with no significant difference between any two of the three groups (P > 0.05), while the numbers of M1 and M2 were significantly decreased and increased, respectively, with significant difference between any two of three groups (P < 0.05 or P < 0.01). In addition, the M2/M1 ratio increased with increase of liver metastatic ability (P < 0.01). There was no statistical significance of correlation of TAMs with each clinical and pathological parameter. M1 was negatively related with lymphatic metastasis and liver metastatic ability. M2 was positively correlated with preoperative CEA level, lymphatic metastasis, tumor differentiation degree and liver metastatic ability. The same was the case for the M2/M1 ratio. Conclusions: Effects of TAMs on liver metastasis of colorectal cancer do not depend on the total number of TAMs, but on the number and proportion of functional subtypes M1 and M2. M2 number and M2/M1 ratio are more accurate predictors for liver metastasis of colorectal cancer.

Jinan red ginseng extract inhibits triglyceride synthesis via the regulation of LXR-SCD expression in hepatoma cells

  • Hwang, Seung-mi;Park, Chung-berm
    • 한국식품과학회지
    • /
    • 제51권6호
    • /
    • pp.558-564
    • /
    • 2019
  • Hypertriglyceridemia is one of the metabolic syndrome that is often observed as a result of lipid abnormalities. It is associated with other lipids, metabolic disorders, cardiovascular disease and liver disease. Korean red ginseng is known to affect obesity, dyslipidemia, liver disease and liver function, but the mechanism of its effect is not clear. This study examined the beneficial effects of hypertriglyceridemia and the mechanism of action of Jinan red ginseng extract (JRG) in hepatoma cells. To measure the levels of triglyceride accumulation, we studied the expression of proteins and mRNAs related to lipidogenesis in hepatoma cells (Huh7 and HepG2). JRG decreases the lipidogenic markers, peroxisome proliferator-activated receptor γ (PPARγ), CCAAT-enhancer-binding proteins α (C/EBPα) and C/EBPβ which are major regulators of triglyceride synthesis in hepatoma cells. We also found that JRG reduced sterol regulatory element binding proteins 1c (SREBP-1c), C/EBPα and C/EBPβ by regulating liver X receptor (LXR) and stearoyl CoA desaturase (SCD) expressions. In addition, the first-limited step of synthesis triglyceride (TG), glycerol-3-phosphate (G3P) is decreased by JRG. These results suggest that the anti-hypertriglyceride effect of JRG in hepatoma cells could be accompanied with the inhibition of lipidogenic transcription factors by regulating LXR and SCD expression.