• Title/Summary/Keyword: liver cells

Search Result 1,969, Processing Time 0.028 seconds

Risk Assessment of Ethylhexyl Dimethyl PABA in Cosmetics

  • Sung, Chi Rim;Kim, Kyu-Bong;Lee, Joo Young;Lee, Byung-Mu;Kwack, Seung Jun
    • Toxicological Research
    • /
    • v.35 no.2
    • /
    • pp.131-136
    • /
    • 2019
  • Ethylhexyl dimethyl para-aminobenzoic acid (PABA) is an oily yellow liquid derivative of water-soluble PABA commonly used in sunscreen. Ethylhexyl dimethyl PABA is widely used as an ingredient in many cosmetics at an average concentration of 1.25% (0.5-2.0%) in Korea. Previous studies, including those involving animals, have demonstrated that ethylhexyl dimethyl PABA is toxic to the following four organs: testis, epididymis, spleen, and liver. In addition, experiments using human keratinocytes found that ethylhexyl dimethyl PABA inhibits cell growth and DNA synthesis at low concentrations, and halted the cell cycle of MM96L cells (human melanoma cell line) at the G1 phase. Despite limited clinical data in humans, many studies have confirmed increased mutagenicity of ethylhexyl dimethyl PABA following exposure to sunlight, which suggests that this molecule is likely to contribute to onset of sun-induced cancer despite protecting the skin through absorption of UVB. For risk assessment, the no observed adverse effect level (NOAEL) chosen was 100 mg/kg bw/day in a 4 weeks oral toxicity study. Systemic exposure dosage (SED) was 0.588 mg/kg bw/day for maximum use of ethylhexyl dimethyl PABA in cosmetics. Based on the risk assessment and exposure scenarios conducted in this study, the margin of safety (MOS) was calculated to be 180.18 for a sunscreen containing 8% ethylhexyl dimethyl PABA, which is the maximum level allowed by the relevant domestic authorities.

Effect of dietary supplementation of garlic powder and phenyl acetic acid on productive performance, blood haematology, immunity and antioxidant status of broiler chickens

  • Ismail, I.E.;Alagawany, M.;Taha, A.E.;Puvaca, N.;Laudadio, V.;Tufarelli, V.
    • Animal Bioscience
    • /
    • v.34 no.3_spc
    • /
    • pp.363-370
    • /
    • 2021
  • Objective: The effect of garlic powder (GP) and phenyl acetic (PA) acid throughout the fattening period of broiler chickens on performance, blood parameters, immune, and antioxidant parameters as well as carcass traits was evaluated. Methods: A total of 210 day-old Cobb broiler chicks were randomly distributed into seven dietary treatments having five replications with six chicks per replicate. The first group (control) fed a basal diet without supplements, whereas the 2nd, 3rd, and 4th group were fed basal diet plus 0.25, 0.50, and 0.75 g GP/kg diet, respectively and the group 5th, 6th, and 7th were fed on the basal diet plus 0.25, 0.50, and 0.75 g PA/kg diet. Results: Broiler body weight and gain at 21 and 42 days were increased (p<0.05) with diets supplemented with GP and PA. Red blood cells and hemoglobin were improved in chickens fed diets enriched with GP. Broiler chickens received diets containing either GP or PA recorded the higher values (p<0.05) of total protein, globulin, high-density lipoprotein, immunoglobulin M (IgM), and IgG, superoxide dismutase and total antioxidant capacity; while, blood total cholesterol, low-density lipoprotein, aspartate-aminotransferase, and malondialdehyde were lowered (p<0.05) compared to control-diet. Liver and immune-related organs weight were improved (p<0.05) in broilers fed diet supplemented with GP and PA. Conclusion: Feeding of GP or PA in diet had positive effects on performance traits and immunological, antioxidant and physiological status of broilers. Thus, the use of tested feed additives as an eco-friendly alternative to antibiotics produced a positive effect on animal health.

Contributory Role of BLT2 in the Production of Proinflammatory Cytokines in Cecal Ligation and Puncture-Induced Sepsis

  • Park, Donghwan;Ro, MyungJa;Lee, A-Jin;Kwak, Dong-Wook;Chung, Yunro;Kim, Jae-Hong
    • Molecules and Cells
    • /
    • v.44 no.12
    • /
    • pp.893-899
    • /
    • 2021
  • BLT2 is a low-affinity receptor for leukotriene B4, a potent lipid mediator of inflammation generated from arachidonic acid via the 5-lipoxygenase pathway. The aim of this study was to investigate whether BLT2 plays any role in sepsis, a systemic inflammatory response syndrome caused by infection. A murine model of cecal ligation and puncture (CLP)-induced sepsis was used to evaluate the role of BLT2 in septic inflammation. In the present study, we observed that the levels of ligands for BLT2 (LTB4 [leukotriene B4] and 12(S)-HETE [12(S)-hydroxyeicosatetraenoic acid]) were significantly increased in the peritoneal lavage fluid and serum from mice with CLP-induced sepsis. We also observed that the levels of BLT2 as well as 5-lipoxygenase (5-LO) and 12-LO, which are synthesizing enzymes for LTB4 and 12(S)-HETE, were significantly increased in lung and liver tissues in the CLP mouse model. Blockade of BLT2 markedly suppressed the production of sepsis-associated cytokines (IL-6 [interleukin-6], TNF-α [tumor necrosis factor alpha], and IL-1β [interleukin-β] as well as IL-17 [interleukin-17]) and alleviated lung inflammation in the CLP group. Taken together, our results suggest that BLT2 cascade contributes to lung inflammation in CLP-induced sepsis by mediating the production of inflammatory cytokines. These findings suggest that BLT2 may be a potential therapeutic target for sepsis patients.

Anticancer Activity of Extremely Effective Recombinant L-Asparaginase from Burkholderia pseudomallei

  • Darwesh, Doaa B.;Al-Awthan, Yahya S.;Elfaki, Imadeldin;Habib, Salem A.;Alnour, Tarig M.;Darwish, Ahmed B.;Youssef, Magdy M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.5
    • /
    • pp.551-563
    • /
    • 2022
  • L-asparaginase (E.C. 3.5.1.1) purified from bacterial cells is widely used in the food industry, as well as in the treatment of childhood acute lymphoblastic leukemia. In the present study, the Burkholderia pseudomallei L-asparaginase gene was cloned into the pGEX-2T DNA plasmid, expressed in E. coli BL21 (DE3) pLysS, and purified to homogeneity using Glutathione Sepharose chromatography with 7.26 purification fold and 16.01% recovery. The purified enzyme exhibited a molecular weight of ~33.6 kDa with SDS-PAGE and showed maximal activity at 50℃ and pH 8.0. It retained 95.1, 89.6%, and 70.2% initial activity after 60 min at 30℃, 40℃, and 50℃, respectively. The enzyme reserved its activity at 30℃ and 37℃ up to 24 h. The enzyme had optimum pH of 8 and reserved 50% activity up to 24 h. The recombinant enzyme showed the highest substrate specificity towards L-asparaginase substrate, while no detectable specificity was observed for L-glutamine, urea, and acrylamide at 10 mM concentration. THP-1, a human leukemia cell line, displayed significant morphological alterations after being treated with recombinant L-asparaginase and the IC50 of the purified enzyme was recorded as 0.8 IU. Furthermore, the purified recombinant Lasparaginase improved cytotoxicity in liver cancer HepG2 and breast cancer MCF-7 cell lines, with IC50 values of 1.53 and 18 IU, respectively.

Subacute Oral Toxicity Evaluation of Expanded-Polystyrene-Fed Tenebrio molitor Larvae (Yellow Mealworm) Powder in Sprague-Dawley Rats

  • Choi, Eun-Young;Lee, Jae-Han;Han, So-Hee;Jung, Gi-Hwan;Han, Eun-Ji;Jeon, Su-Ji;Jung, Soo-Hyun;Park, Jong-Uk;Park, Ji-Hoon;Bae, Yoon-Ju;Park, Eun-Soo;Jung, Ji-Youn
    • Food Science of Animal Resources
    • /
    • v.42 no.4
    • /
    • pp.609-624
    • /
    • 2022
  • Tenebrio molitor larvae, as known as edible insects, has advantages of being rich in protein, and has been recognized as a suitable alternate protein source for broiler and pig feed. Moreover, given their ability to biodegrade polystyrene, a major pollutant, Tenebrio molitor larvae has been proposed as an innovative solution to environmental problems. In the present study, we investigated the toxicity of Tenebrio molitor larvae powder (TMlp) ingested with expanded-polystyrene (W/ eps) through in vitro and in vivo experiments. The objective of this study was to determine whether TMlp W/ eps can be applied as livestock alternative protein source. For in vitro experiments, cytotoxicity test was performed to investigate the effects of TMlp-extract on the viability of estrogen-dependent MCF-7 cells. The possibility of estrogen response was investigated in two groups: Expanded-polystyrene-fed (W/ eps) TMlp group and without expanded-polystyrene-fed (W/o eps) TMlp group. For in vivo experiments, The male Sprague-Dawley rats were divided based on the dosage of TMlp administered and oral administration was performed to every day for 5 weeks. A toxicological assessments were performed, which included clinical signs, food consumption, body and organ weights, hematology, serum chemistry, and hematoxylin and eosin staining of liver and kidney. There were no specific adverse effect of TMlp W/ eps-related findings under the experimental conditions of this study, but further studies on both sexes and animal species differences should be investigated. In conclusion, TMlp W/ eps was considered non-toxic and observed to be applicable as an alternative protein source for livestock feed.

Physiological and Histological Changes of Overfeeding-induced Obese Rainbow Trout Oncorhynchus mykiss (사료 과다공급으로 유도된 비만 무지개송어(Oncorhynchus mykiss)의 생리·조직학적 변화)

  • Park, Jiyeon;Roh, Heyong Jin;Park, Junewoo;Jeong, Dahye;Lee, Mu Kun;Kim, Do-Hyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.5
    • /
    • pp.688-696
    • /
    • 2022
  • Obesity could cause immune-physiological disorders in fish. Yet, little is known about the impact of obesity on stress and histological responses. This study aimed to determine histological and physiological changes in and vulnerability of overfeeding-induced obese rainbow trout Oncorhynchus mykiss exposed to stress condition. Control, intermediate and overfed groups were fed at 1.5, 2.5 and 3.09% of their body weight per day, respectively, for eight weeks. Weight gain, body mass index, hepatosomatic index and serological parameters, and histology of liver were measured in five fish from each group at week 0, 2, 4, and 8. At week 8, 20 fish from each group were exposed to heat stress by increasing water temperature at a rate of 3℃ per day from 15 to 25℃ and maintaining the final temperature for 10 days. Overall, overfed fish showed significantly higher weight gain, body mass index, and serological parameters than those of fish in the other groups. Fish in the overfed and intermediate groups displayed multifocal infiltration of inflammatory cells in hepatic parenchyma. Mortality rate and serological parameters of fish in the overfed group exposed to heat stress were significantly higher than those of fish in the other groups, indicating increased vulnerability to environmental stress.

Hepatitis C Virus Nonstructural Protein 5A Interacts with Immunomodulatory Kinase IKKε to Negatively Regulate Innate Antiviral Immunity

  • Kang, Sang-Min;Park, Ji-Young;Han, Hee-Jeong;Song, Byeong-Min;Tark, Dongseob;Choi, Byeong-Sun;Hwang, Soon B.
    • Molecules and Cells
    • /
    • v.45 no.10
    • /
    • pp.702-717
    • /
    • 2022
  • Hepatitis C virus (HCV) infection can lead to chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV employs diverse strategies to evade host antiviral innate immune responses to mediate a persistent infection. In the present study, we show that nonstructural protein 5A (NS5A) interacts with an NF-κB inhibitor immunomodulatory kinase, IKKε, and subsequently downregulates beta interferon (IFN-β) promoter activity. We further demonstrate that NS5A inhibits DDX3-mediated IKKε and interferon regulatory factor 3 (IRF3) phosphorylation. We also note that hyperphosphorylation of NS5A mediates protein interplay between NS5A and IKKε, thereby contributing to NS5A mediated modulation of IFN-β signaling. Lastly, NS5A inhibits IKKε-dependent p65 phosphorylation and NF-κB activation. Based on these findings, we propose NS5A as a novel regulator of IFN signaling events, specifically by inhibiting IKKε downstream signaling cascades through its interaction with IKKε. Taken together, these data suggest an additional mechanistic means by which HCV modulates host antiviral innate immune responses to promote persistent viral infection.

Antioxidant, Antiinflammation and Hepatoprotective activity of Schizandrae Fructus processed with differenciated steaming number (증숙 오미자의 항산화, 항염증 및 간보호 효과 비교 연구)

  • Choo, Byung Kil;Chung, Ki Hun;Seo, Young-Bae;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.28 no.2
    • /
    • pp.83-92
    • /
    • 2013
  • Objectives : We investigated differances of physiological functionalities in the steamed Schisandrae Fructus. Methods : The samples were extracts of dryed schisandrae fructus without steaming process (S0), extracts of schisandrae fructus with three times steamed (S3), extracts of schisandrae fructus with five times steamed (S5) and extracts of schisandrae fructus with seven times steamed (S7). We analyzed contents of schisandrin, gomisin, total polyphenol and flavonoid and antioxidant activities. We researched antiinflammation effects for Raw264.7 cells. To evaluate liver protective activity, we measured AST, ALT and gamma-GTP in serum of alcoholic mice. Results : As the steaming number of schisandrae fructus increase, the contents of schisandrin and gomisin were more increased. The contents of total polyphenol of S5 and S7 were significantly increased compared to that of S0. DPPH free radical scavenging activities of S5 and S7 were significantly increased compared to that of S0, ABST radical scavenging activities of S3 and S5 were significantly increased compared to that of S0 in vitro. The NO production of all sample was significantly decreased compared to control, PGE2 release of S3, S5 and S7 were significantly decreased compared to control. IL-$1{\beta}$ release of S5 and S7 were significantly decreased. AST, ALT and gamma-GTP of S3, S5 and S7 were significantly decreased compared to control. Conclusions : We think that extracts of schisandrae fructus with steaming process may have more potential efficacy than a schisandrae fructus without steaming process.

Deletion of the oligopeptide transporter Lmo2193 decreases the virulence of Listeria monocytogenes

  • Li, Honghuan;Qiao, Yanjie;Du, Dongdong;Wang, Jing;Ma, Xun
    • Journal of Veterinary Science
    • /
    • v.21 no.6
    • /
    • pp.88.1-88.13
    • /
    • 2020
  • Background: Listeria monocytogenes is a gram-positive bacterium that causes listeriosis mainly in immunocompromised hosts. It can also cause foodborne outbreaks and has the ability to adapt to various environments. Peptide uptake in gram-positive bacteria is enabled by oligopeptide permeases (Opp) in a process that depends on ATP hydrolysis by OppD and F. Previously a putative protein Lmo2193 was predicted to be OppD, but little is known about the role of OppD in major processes of L. monocytogenes, such as growth, virulence, and biofilm formation. Objectives: To determine whether the virulence traits of L. monocytogenes are related to OppD. Methods: In this study, Lmo2193 gene deletion and complementation strains of L. monocytogenes were generated and compared with a wild-type strain for the following: adhesiveness, invasion ability, intracellular survival, proliferation, 50% lethal dose (LD50) to mice, and the amount bacteria in the mouse liver, spleen, and brain. Results: The results showed that virulence of the deletion strain was 1.34 and 0.5 orders of magnitude higher than that of the wild-type and complementation strains, respectively. The function of Lmo2193 was predicted and verified as OppD from the ATPase superfamily. Deletion of lmo2193 affected the normal growth of L. monocytogenes, reduced its virulence in cells and mice, and affected its ability to form biofilms. Conclusions: Deletion of the oligopeptide transporter Lmo2193 decreases the virulence of L. monocytogenes. These effects may be related to OppD's function, which provides a new perspective on the regulation of oligopeptide transporters in L. monocytogenes.

Effects of Acetaminophen on Reproductive Activities in Male Golden Hamsters

  • Chae Yeon Lee;Hyunji Hwang;Jin-Soo Park;Sung-Ho Lee;Chang Eun Park;Yong-Pil Cheon;Donchan Choi
    • Development and Reproduction
    • /
    • v.27 no.1
    • /
    • pp.25-37
    • /
    • 2023
  • Acetaminophen [Paracetamol, N-acetyl-para-aminophenol (APAP)] is a common over-the-counter analgesic agent as nonsteroidal anti-inflammatory drugs (NSAIDs). The high doses or the long-term treatment of acetaminophen via usual gavage feeding resulted in damage of testicles that presented recoverable impairment, as well as liver and kidney. The influence of acetaminophen was examined in male golden hamsters treated with acetaminophen-containing diet feeding. They were divided into 5 groups and subjected to this experiment for 4 weeks: animals housed in long photoperiod (LP) as LP control, animals housed in short photoperiod (SP) for 4 weeks as SP control (SP4), and groups of animals treated with low, middle, and high concentrations of acetaminophen (Low, Middle, High groups). Also animals housed in SP for 8 weeks were included (SP8) to contrast testicular activities, if necessary. As results, spermatozoa filled the seminiferous tubules of the testicles of animals in LP control and SP4 groups. The aspects were seen in the animals taken diets of low and middle doses of acetaminophen. The animals who fed high dose of acetaminophen showed large or small testicles. The large testicles displayed all germ cells at the steps of spermatogenesis. The small testicles presented no sperm as the animals housed in SP for 8 weeks. Thus these results indicate that acetaminophen invokes the antigonadal effects and accelerates the regressing process of the testicles in the animals compared to the animals exposed to SP.