• Title/Summary/Keyword: live loads

Search Result 160, Processing Time 0.025 seconds

Deflection Analysis of Long Span Structures Using Under-Tension System (언더텐션 시스템을 이용한 장스팬 구조의 처짐 거동 해석)

  • Park, Duk-Kun;Lee, Jin;Ham, Su-Yun;Ahn, Nam-Shik;Lee, Ki-Hak;Lee, Jae-Hong
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.66-69
    • /
    • 2008
  • This study presents deflection analysis of long span structures for pedestrian bridge on crossroads. For long span structures, the size of structural members should be determined considering the esthetic view and vehicle below the structures. As a result, the slenderness ratio of members is increased and the structure may be suffered from significant deflection. The under-tensioned system on lower part of the structure, is applied in order to reduce the deflection and the size of members. In this regard, the under-tensioned system enables the load of upper parts to carη to the end of beam by means of tensional force in cable. In addition, effectiveness of under-tensioned system can be different depending on the size of cable, the number and spacing of posts. This study is performed with conforming the effect by analytical various parameters (size of cable, number and spacing of post). Dead and live loads is supposed to apply in the slab, and the analytical result by MIDAS program are presented addressing the effect of the under-tensioned system.

  • PDF

A study on the strength Change of Used Pipe Support (재사용 파이프서포트의 내력변화 연구)

  • Baek, Sin-Won;Choe, Sun-Ju
    • Journal of the Korea Construction Safety Engineering Association
    • /
    • s.38
    • /
    • pp.79-87
    • /
    • 2006
  • Formwork is a temporary structure that supports its weight and that of freshly placed concrete as well as construction live loads. In constructions site, pipe supports are usually used as shores which are consisted of the stab formwork. The strength of a pipe support is decreasing as it is frequently being used at the construction site. Among the accidents and failures that occur during concrete construction, there are many formwork failures which usually happen at the time concrete is being placed. The objective of this study is to find out the strength change of used pipe support and unused pipe supports according to aging. In this study, 2857 pipe supports were prepared. Among these pipe supports, 2337 pipe supports were lent to the construction companies free of charge. 520 pipe supports were kept on the outside. Compressive strength was measured by knife edge test and plate test at each 3 month. Test results show that the strength of unused pipe supports as well as used pipe supports was decreasing according to age, use frequency and load carrier, and the strength of used pipe supports was lower than the strength of unused pipe supports at the same age. So, the strength of used pipe supports from 191 days to present day was not satisfied the specification of KSF 8001. In this study, the strength of pipe support according to age, use frequency and load carrier was predicted using SPSS 12.0. It was known that the strength of pipe support using for 5 years was reduced to 42.8%. According to these results, it shows that attention has to be paid to formwork design using used pipe supports. Therefore, the present study results will be able to provide a firm base to prevent formwork collapses.

  • PDF

Design and Implementation of Internet Broadcasting System based on P2P Architecture (P2P 구조에 기반한 인터넷 방송 시스템 설계 및 구현)

  • Woo, Moon-Sup;Kim, Nam-Yun;Hwang, Ki-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.12B
    • /
    • pp.758-766
    • /
    • 2007
  • IStreaming services with a client-server architecture have scalability problem because a server cannot accomodate clients more than its processing capability. This paper introduces a case study for implementing H.264 streaming system based on P2P architecture in order to provide scalable and stable broadcast streaming services over the internet. The prototype system called OmniCast264 consists of the H.264 encoding server, the streaming server, the proxy server, and peer nodes. The proxy server dynamically manages placement of the peer nodes on the P2P network. Omnicast264 has the concepts of distributed streaming loads, real-time playback, error-robustness and modularity. Thus, it can provide large-scale broadcast streaming services. Finally, we have built P2P streaming systems with 12 PCs connected serially or in parallel. The experiment shows that OmniCast264 can provide real-time playback.

Evaluation of Chloride Diffusion Coefficients in Cold Joint Concrete Considering Tensile and Compressive Regions (인장 및 압축영역에서 콜드조인트 콘크리트의 염화물 확산계수 평가)

  • Mun, Jin-Man;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.481-488
    • /
    • 2016
  • Concrete member has been subjected to dead and live loads in use, and the induced stress can affect not only structural but also durability behavior. In mass concrete construction, construction joint are required, however cold joint usually occur due to poor surface treatment and delayed concrete placing. The concrete with joint is vulnerable to both shear stress and chloride ingress. This paper presents a quantitative evaluation of cold joint and loading conditions on chloride diffusion behavior. With increasing tensile stress from 30% to 60%, chloride diffusion coefficient gradually increases, which shows no significant difference from result in the sound concrete. However chloride diffusion coefficient under 30% level of compressive stress significantly increases by 1.70 times compared with normal condition. Special attention should be paid for the enlarged diffusion behavior cold joint concrete under compressive stress.

An Experimental Study on Thermal Prestressing Method for Strengthening Concrete Bridge (콘크리트 교량의 보강을 위한 온도 프리스트레싱 공법의 실험적 연구)

  • Ahn, Jin-Hee;Kim, Jun-Hwan;Choi, Kyu-Tae;Kim, Sang-Hyo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.483-490
    • /
    • 2007
  • Traditional external post-tensioning method using either steel bars or tendons is commonly used as a retrofitting method for concrete bridges. However, the external post-tensioning method has some disadvantages such as stress concentration at anchorages and inefficient load carrying capability regarding live loads. Thermal prestressing method is a newly proposed method for strengthening and rehabilitation of concrete girder bridges. Founded on a simple concept of thermal expansion and contraction of steel, the method is a hybrid method of external post-tensioning and steel plate bonding, combining the merits of two methods. In this paper, basic concepts of the method are presented and an illustrative experiment is introduced. From actual experimental data, the thermal prestressing effect is substantiated and the FEM approach for its analysis is verified.

A Study of the Advanced Composite Material Slab for Light Weight of Tall Building (초고층빌딩 경량화를 위한 복합신소재 슬래브에 관한 연구)

  • Han, Bong-Koo
    • Composites Research
    • /
    • v.27 no.1
    • /
    • pp.7-13
    • /
    • 2014
  • For each construction material used, there is certain theoretical limit in sizes. For tall building construction, the reduction in slab weight is the first step to take in order to break such size limits. In this paper, the feasibility of such objective is proven and given by numerical analysis result. For a typical building slab, both concrete and advanced composite sandwich panels are considered. The concrete slab is treated as a special orthotropic plate to obtain more accurate result. For each panel, the deflection under the dead and live loads is compared, since both tensile and compressive strengths of the composites are far more higher than those of concrete. All types of sandwich panels considered, except one case, have self-weights less than one tenth of that of the reinforced concrete slab, with deflections less than that of the reinforced concrete slab.

Field Survey of Insulation Performance Analysis in Rural Houses (농촌주택 단열성능 분석 현장연구)

  • Kwon, Soon chan;Kim, Eun Ja;Lim, Chang Su;Park, Mi Jeong;Choi, Jin Ah
    • The Korean Journal of Community Living Science
    • /
    • v.27 no.spc
    • /
    • pp.703-714
    • /
    • 2016
  • Dwelling environments that can help elderly farmers to live more safely, independently, and conveniently are becoming more and more important. Many rural houses are built without any particular architectural or energy-related criteria, so most of them have poor insulation. The construction technology used is also not precise, which increases the loads for heating and cooling. Therefore, rural houses need to be improved. Also, there is more and more need for plans to realize eco-friendly dwellings, so the principle of nature-oriented plans related to the direction, insulation, or landscaping of a house is being emphasized. Insulation is one of the most effective ways to save energy for heating and cooling. This preliminary study to improve the insulation of rural houses examined three regions in South Korea: the central region, the southern region, and the Jeju Island. A field investigation was conducted on a total of 18 houses, including six from each town in the selected regions. The information was used to figure out the current status of rural houses and the characteristics of the buildings. The main living spaces are the living room for the central region and the main room in the southern region and Jeju Island. The southern regions are plane shapes surrounded by rooms, and all ventilation is accomplished by windows. The studied houses were mostly masonry structures with slate rooftops. Additions and improvements included room expansions and bathroom interior installations.

A Study on Strengthening of Steel Girder Bridge using Multi-Stepwise Thermal Prestressing Method (다단계 온도프리스트레싱을 이용한 강거더교의 보강에 관한 연구)

  • Kim, Sang Hyo;Kim, Jun Hwan;Ahn, Jin Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.717-726
    • /
    • 2006
  • Traditional external post-tensioning method using either steel bars or tendons is commonly used as a retrofitting method for steel composite bridges. However, the method has some disadvantages such as stress concentration at anchorages and inefficient load-carrying capability of live loads. Multi-stepwise prestressing method using thermal expanded coverplate is a newly proposed prestressing method, which was originally developed for prestressing steel structures. A new retrofitting method for steel girder bridges founded on a simple concept of thermal expansion and contraction of cover plate, the method is a hybrid of and combines the advantages of external post-tensioning and thermal prestressing. In this paper, basic concepts of the method are presented and an illustrative experiment is introduced. From actual experimental data, the thermal prestressing effect was substantiated and the FEM approach for its analysis was verified. The retrofitting effects ofa single-span bridge were analyzed and the feasibility of the developed method was examined.

Comparison on Flexural Behaviors of Architectural Precast Prestressed Rectangular and Inverted-tee Concrete Beams (건축용 프리캐스트 프리스트레스트 역티형 보와 직사각형 보의 휨거동 비교)

  • 유승룡
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.75-82
    • /
    • 2000
  • Flexural behaviors of two typical architectural precast beam sections ; inverted tee and rectangular - were compared and investigated. The heights of web in inverted tee beams are generally less than half of beam depth in building structures to accomodate the nib of double-tee where the total building height limited considerably. The inverted-tee beams are designed for parking live load - 500kgf/$\m^2$ and market - 1,200kgf/$\m^2$ according to the currently used typical shape in the domestic market building site in Korea. The bottom dimension and area of rectangular beams are same to those of inverted tee beams to compare the flexural behaviors of two beams. These two beams are also reinforced for similar strength. Four flexural tests are performed on two beams. Following results are obtained from the tests; 1) The rectangular beam is simpler in production, transportation, and election, and more economic than the inverted tee beam for these two beams with same dimension and similar strength. 1) The estimations of flexural strength of two beams by Strength Design Method and Strain Compatibility Method is fully complied with the result of tests. However, Strain Compatibility Method is slightly ore accurate than Strength Design Method. 2) Overall deflections of two type beam under the service loads are less than those of the allowable limit in ACI Code provision. 3) The rectangular beam is failed in large deflection (average 12.56mm large) than those of inverted tee beams. 4) The rectangular and inverted tee beams with 6m span develop initial flexural crackings under the 88% of full service loading even though they designed to satisfy the ACI tensile stress limit provisions.

Optimization of cables size and prestressing force for a single pylon cable-stayed bridge with Jaya algorithm

  • ATMACA, Barbaros;DEDE, Tayfun;GRZYWINSKI, Maksym
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.853-862
    • /
    • 2020
  • In recent years, due to the many advantages cable-stayed bridges have often constructed in medium and long span. These advantages can be listed as an aesthetically pleasing appearance, economic and easy construction, etc. The main structural elements of cable-stayed bridges are listed as deck, pylon, cables and foundation. Perhaps one of the most vital and expensive of these structural elements is stay-cables. Stay-cables ensure the allowable displacement and distribution of bending moments along the bridge deck with prestressing force. Therefore the optimum design of the stay-cables and prestressing force are very important in achieving the performance expected from the cable-stayed bridges. This paper aims to obtain the stay-cables size and prestressing force optimization of the cable-stayed bridge. For this purpose, single pylon and fan type cable configuration Manavgat Cable-Stayed Bridge was selected as an example. The three dimensional (3D) finite element model (FEM) of the bridge was created with SAP2000. Analysis of the 3D FEM of the bridge was conducted under the different combined effects of the self-weight of the structural element, prestressing force of stay-cable and live load. Stay-cable stress and deck displacement were taken into account as constraints for the optimization problem. To optimize this existing bridge a metaheuristic algorithm named Jaya was used in the optimization process. 3D FEM of the selected bridge was repeatedly analyzed by using Open Applicable Programming Interface (OAPI) properties of SAP2000. To carry out the optimization process the developed program which integrates the Jaya algorithm and the required codes for calling SAP2000 is coded in MATLAB. At the end of the study, the total weight of the stay-cables was reduced more than 40% according to existing stay cables under loads taken into account.